Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
2.
Anal Bioanal Chem ; 415(5): 841-854, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36651972

ABSTRACT

Monitoring the protein concentration and buffer composition during the Ultrafiltration/Diafiltration (UF/DF) step enables the further automation of biopharmaceutical production and supports Real-time Release Testing (RTRT). Previously, in-line Ultraviolet (UV) and Infrared (IR) measurements have been used to successfully monitor the protein concentration over a large range. The progress of the diafiltration step has been monitored with density measurements and Infrared Spectroscopy (IR). Raman spectroscopy is capable of measuring both the protein and excipient concentration while being more robust and suitable for production measurements in comparison to Infrared Spectroscopy (IR). Regardless of the spectroscopic sensor used, the low concentration of excipients poses a challenge for the sensors. By combining sensor measurements with a semi-mechanistic model through an Extended Kalman Filter (EKF), the sensitivity to determine the progress of the diafiltration can be improved. In this study, Raman measurements are combined with an EKF for three case studies. The advantages of Kalman-filtered Raman measurements for excipient monitoring are shown in comparison to density measurements. Furthermore, Raman measurements showed a higher measurement speed in comparison to Variable Pathlength (VP) UV measurement at the trade-off of a slightly worse prediction accuracy for the protein concentration. However, the Raman-based protein concentration measurements relied mostly on an increase in the background signal during the process and not on proteinaceous features, which could pose a challenge due to the potential influence of batch variability on the background signal. Overall, the combination of Raman spectroscopy and EKF is a promising tool for monitoring the UF/DF step and enables process automation by using adaptive process control.


Subject(s)
Excipients , Ultrafiltration , Excipients/chemistry , Ultrafiltration/methods , Proteins , Spectrum Analysis, Raman/methods , Spectrophotometry, Infrared
3.
Biotechnol Bioeng ; 118(11): 4255-4268, 2021 11.
Article in English | MEDLINE | ID: mdl-34297358

ABSTRACT

A promising application of Process Analytical Technology to the downstream process of monoclonal antibodies (mAbs) is the monitoring of the Protein A load phase as its control promises economic benefits. Different spectroscopic techniques have been evaluated in literature with regard to the ability to quantify the mAb concentration in the column effluent. Raman and Ultraviolet (UV) spectroscopy are among the most promising techniques. In this study, both were investigated in an in-line setup and directly compared. The data of each sensor were analyzed independently with Partial-Least-Squares (PLS) models and Convolutional Neural Networks (CNNs) for regression. Furthermore, data fusion strategies were investigated by combining both sensors in hierarchical PLS models or in CNNs. Among the tested options, UV spectroscopy alone allowed for the most precise and accurate prediction of the mAb concentration. A Root Mean Square Error of Prediction (RMSEP) of 0.013 g L-1 was reached with the UV-based PLS model. The Raman-based PLS model reached an RMSEP of 0.232 g L-1 . The different data fusion techniques did not improve the prediction accuracy above the prediction accuracy of the UV-based PLS model. Data fusion by PLS models seems meritless when combining a very accurate sensor with a less accurate signal. Furthermore, the application of CNNs for UV and Raman spectra did not yield significant improvements in the prediction quality. For the presented application, linear regression techniques seem to be better suited compared with advanced nonlinear regression techniques, like, CNNs. In summary, the results support the application of UV spectroscopy and PLS modeling for future research and development activities aiming to implement spectroscopic real-time monitoring of the Protein A load phase.


Subject(s)
Models, Molecular , Neural Networks, Computer , Staphylococcal Protein A/chemistry , Spectrophotometry, Ultraviolet , Spectrum Analysis, Raman
4.
Biotechnol Bioeng ; 118(2): 905-917, 2021 02.
Article in English | MEDLINE | ID: mdl-33150957

ABSTRACT

Real-time monitoring and control of protein A capture steps by process analytical technologies (PATs) promises significant economic benefits due to the improved usage of the column's binding capacity, by eliminating time-consuming off-line analytics and costly resin lifetime studies, and enabling continuous production. The PAT method proposed in this study relies on ultraviolet (UV) spectroscopy with a dynamic background subtraction based on the leveling out of the conductivity signal. This point in time can be used to collect a reference spectrum for removing the majority of spectral contributions by process-related contaminants. The removal of the background spectrum facilitates chemometric model building and model accuracy. To demonstrate the benefits of this method, five different feedstocks from our industry partner were used to mix the load material for a case study. To our knowledge, such a large design space, which covers possible variations in upstream condition besides the product concentration, has not been disclosed yet. By applying the conductivity-based background subtraction, the root mean square error of prediction (RMSEP) of the partial least squares (PLS) model improved from 0.2080 to 0.0131 g L-1 . Finally, the potential of the background subtraction method was further evaluated for single wavelength-based predictions to facilitate implementation in production processes. An RMSEP of 0.0890 g L-1 with univariate linear regression was achieved, showing that by subtraction of the background better prediction accuracy is achieved then without subtraction and a PLS model. In summary, the developed background subtraction method is versatile, enables accurate prediction results, and is easily implemented into existing chromatography setups with typically already integrated sensors.


Subject(s)
Models, Chemical , Spectrophotometry, Ultraviolet , Staphylococcal Protein A
5.
Anal Bioanal Chem ; 412(9): 2047-2064, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32146498

ABSTRACT

As competition in the biopharmaceutical market gets keener due to the market entry of biosimilars, process analytical technologies (PATs) play an important role for process automation and cost reduction. This article will give a general overview and address the recent innovations and applications of spectroscopic methods as PAT tools in the downstream processing of biologics. As data analysis strategies are a crucial part of PAT, the review discusses frequently used data analysis techniques and addresses data fusion methodologies as the combination of several sensors is moving forward in the field. The last chapter will give an outlook on the application of spectroscopic methods in combination with chemometrics and model predictive control (MPC) for downstream processes. Graphical abstract.


Subject(s)
Biological Products/analysis , Technology, Pharmaceutical/methods , Animals , Humans , Machine Learning , Spectrometry, Fluorescence/methods , Spectrophotometry, Ultraviolet/methods , Spectroscopy, Near-Infrared/methods , Spectrum Analysis, Raman/methods
6.
Anal Bioanal Chem ; 412(9): 2123-2136, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32072210

ABSTRACT

Ultrafiltration/diafiltration (UF/DF) plays an important role in the manufacturing of biopharmaceuticals. Monitoring critical process parameters and quality attributes by process analytical technology (PAT) during those steps can facilitate process development and assure consistent quality in production processes. In this study, a lab-scale cross-flow filtration (CFF) device was equipped with a variable pathlength (VP) ultraviolet and visible (UV/Vis) spectrometer, a light scattering photometer, and a liquid density sensor (microLDS). Based on the measured signals, the protein concentration, buffer exchange, apparent molecular weight, and hydrodynamic radius were monitored. The setup was tested in three case studies. First, lysozyme was used in an UF/DF run to show the comparability of on-line and off-line measurements. The corresponding correlation coefficients exceeded 0.97. Next, urea-induced changes in protein size of glucose oxidase (GOx) were monitored during two DF steps. Here, correlation coefficients were ≥ 0.92 for static light scattering (SLS) and dynamic light scattering (DLS). The correlation coefficient for the protein concentration was 0.82, possibly due to time-dependent protein precipitation. Finally, a case study was conducted with a monoclonal antibody (mAb) to show the full potential of this setup. Again, off-line and on-line measurements were in good agreement with all correlation coefficients exceeding 0.92. The protein concentration could be monitored in-line in a large range from 3 to 120 g L- 1. A buffer-dependent increase in apparent molecular weight of the mAb was observed during DF, providing interesting supplemental information for process development and stability assessment. In summary, the developed setup provides a powerful testing system for evaluating different UF/DF processes and may be a good starting point to develop process control strategies. Graphical Abstract Piping and instrumentation diagram of the experimental setup and data generated by the different sensors. A VP UV/Vis spectrometer (FlowVPE, yellow) measures the protein concentration. From the data of the light scattering photometer (Zetasizer, green) in the on-line measurement loop, the apparant molecular weight and z-average are calculated. The density sensor (microLDS) measures density and viscosity of the fluid in the on-line loop.


Subject(s)
Proteins/analysis , Technology, Pharmaceutical/instrumentation , Animals , Antibodies, Monoclonal/analysis , Buffers , Dynamic Light Scattering , Equipment Design , Glucose Oxidase/analysis , Humans , Muramidase/analysis , Particle Size , Spectrophotometry, Ultraviolet , Ultrafiltration/instrumentation
7.
Biotechnol Bioeng ; 114(2): 368-373, 2017 02.
Article in English | MEDLINE | ID: mdl-27543789

ABSTRACT

The load phase in preparative Protein A capture steps is commonly not controlled in real-time. The load volume is generally based on an offline quantification of the monoclonal antibody (mAb) prior to loading and on a conservative column capacity determined by resin-life time studies. While this results in a reduced productivity in batch mode, the bottleneck of suitable real-time analytics has to be overcome in order to enable continuous mAb purification. In this study, Partial Least Squares Regression (PLS) modeling on UV/Vis absorption spectra was applied to quantify mAb in the effluent of a Protein A capture step during the load phase. A PLS model based on several breakthrough curves with variable mAb titers in the HCCF was successfully calibrated. The PLS model predicted the mAb concentrations in the effluent of a validation experiment with a root mean square error (RMSE) of 0.06 mg/mL. The information was applied to automatically terminate the load phase, when a product breakthrough of 1.5 mg/mL was reached. In a second part of the study, the sensitivity of the method was further increased by only considering small mAb concentrations in the calibration and by subtracting an impurity background signal. The resulting PLS model exhibited a RMSE of prediction of 0.01 mg/mL and was successfully applied to terminate the load phase, when a product breakthrough of 0.15 mg/mL was achieved. The proposed method has hence potential for the real-time monitoring and control of capture steps at large scale production. This might enhance the resin capacity utilization, eliminate time-consuming offline analytics, and contribute to the realization of continuous processing. Biotechnol. Bioeng. 2017;114: 368-373. © 2016 The Authors. Biotechnology and Bioengineering published by Wiley Periodicals, Inc.


Subject(s)
Antibodies, Monoclonal/isolation & purification , Biotechnology/methods , Chromatography, Affinity/methods , Recombinant Proteins/isolation & purification , Staphylococcal Protein A/metabolism , Antibodies, Monoclonal/analysis , Antibodies, Monoclonal/metabolism , Least-Squares Analysis , Recombinant Proteins/analysis , Recombinant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...