Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Radioanal Nucl Chem ; : 1-16, 2023 May 18.
Article in English | MEDLINE | ID: mdl-37360011

ABSTRACT

The isolation and purification of protactinium from uranium materials is essential for 231Pa-235U radiochronometry, but separating Pa from uranium-niobium alloys, a common material in the nuclear fuel cycle, is challenging due to the chemical similarity of Pa and Nb. Here we present three resin chromatography separation techniques for isolating Pa from U and Nb which were independently developed by three different laboratories through ad hoc adaptations of standard operating procedures. Our results underscore the need for and value of purification methods suitable for a diversity of uranium-based materials to ensure the operational readiness of nuclear forensics laboratories. Supplementary Information: The online version contains supplementary material available at 10.1007/s10967-023-08928-y.

2.
Anal Chem ; 91(18): 11643-11652, 2019 09 17.
Article in English | MEDLINE | ID: mdl-31418542

ABSTRACT

An intercomparison of the radio-chronometric ages of four distinct plutonium-certified reference materials varying in chemical form, isotopic composition, and period of production are presented. The cross-comparison of the different 234U/238Pu, 235U/239Pu, 236U/240Pu, and 241Am/241Pu model purification ages obtained at four independent analytical facilities covering a range of laboratory environments from bulk sample processing to clean facilities dedicated to nuclear forensic investigation of environmental samples enables a true assessment of the state-of-practice in "age dating capabilities" for nuclear materials. The analytical techniques evaluated used modern mass spectrometer instrumentation including thermal ionization mass spectrometers and inductively coupled plasma mass spectrometers for isotopic abundance measurements. Both multicollector and single collector instruments were utilized to generate the data presented here. Consensus values established in this study make it possible to use these isotopic standards as quality control standards for radio-chronometry applications. Results highlight the need for plutonium isotopic standards that are certified for 234U/238Pu, 235U/239Pu, 236U/240Pu, and 241Am/241Pu model purification ages as well as other multigenerational radio-chronometers such as 237Np/241Pu. Due to the capabilities of modern analytical instrumentation, analytical laboratories that focus on trace level analyses can obtain model ages with marginally larger uncertainties than laboratories that handle bulk samples. When isotope ratio measurement techniques like thermal ionization mass spectrometry and inductively coupled plasma mass spectrometry with comparable precision are utilized, model purification ages with similar uncertainties are obtained.

SELECTION OF CITATIONS
SEARCH DETAIL
...