Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
1.
Nat Ecol Evol ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965413

ABSTRACT

Drylands are often overlooked in broad conservation frameworks and development priorities and face increasing threats from human activities. Here we evaluated the formal degree of protection of global drylands, their land vertebrate biodiversity and current threats, and projected human-induced land-use changes to drylands under different future climate change and socioeconomic scenarios. Overall, drylands have lower protected-area coverage (12%) compared to non-drylands (21%). Consequently, most dryland vertebrates including many endemic and narrow-ranging species are inadequately protected (0-2% range coverage). Dryland vertebrates are threatened by varied anthropogenic factors-including agricultural and infrastructure development (that is, artificial structures, surfaces, roads and industrial sites). Alarmingly, by 2100 drylands are projected to experience some degree of land conversion in 95-100% of their current natural habitat due to urban, agricultural and alternative energy expansion. This loss of undisturbed dryland regions is expected across different socioeconomic pathways, even under optimistic scenarios characterized by progressive climate policies and moderate socioeconomic trends.

2.
Conserv Biol ; : e14257, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38545678

ABSTRACT

The expanding use of community science platforms has led to an exponential increase in biodiversity data in global repositories. Yet, understanding of species distributions remains patchy. Biodiversity data from social media can potentially reduce the global biodiversity knowledge gap. However, practical guidelines and standardized methods for harvesting such data are nonexistent. Following data privacy and protection safeguards, we devised a standardized method for extracting species distribution records from Facebook groups that allow access to their data. It involves 3 steps: group selection, data extraction, and georeferencing the record location. We present how to structure keywords, search for species photographs, and georeference localities for such records. We further highlight some challenges users might face when extracting species distribution data from Facebook and suggest solutions. Following our proposed framework, we present a case study on Bangladesh's biodiversity-a tropical megadiverse South Asian country. We scraped nearly 45,000 unique georeferenced records across 967 species and found a median of 27 records per species. About 12% of the distribution data were for threatened species, representing 27% of all species. We also obtained data for 56 DataDeficient species for Bangladesh. If carefully harvested, social media data can significantly reduce global biodiversity knowledge gaps. Consequently, developing an automated tool to extract and interpret social media biodiversity data is a research priority.


Un protocolo para recolectar datos sobre biodiversidad en Facebook Resumen El uso creciente de plataformas de ciencia comunitaria ha causado un incremento exponencial de los datos sobre biodiversidad en los repositorios mundiales. Sin embargo, el conocimiento sobre la distribución de las especies todavía está incompleto. Los datos sobre biodiversidad obtenidos de las redes sociales tienen el potencial para disminuir el vacío de conocimiento sobre la biodiversidad mundial. No obstante, no existe una guía práctica o un método estandarizado para recolectar dichos datos. Seguimos los protocolos de privacidad y protección de datos para diseñar un método estandarizado para extraer registros de la distribución de especies de grupos en Facebook que permiten el acceso a sus datos. El método consta de tres pasos: selección del grupo, extracción de datos y georreferenciación de la localidad registrada. También planteamos cómo estructurar las palabras clave, buscar fotografías de especies y georreferenciar las localidades de dichos registros. Además, resaltamos algunos retos que los usuarios pueden enfrentar al extraer los datos de distribución de Facebook y sugerimos algunas soluciones. Aplicamos nuestro marco de trabajo propuesto a un estudio de caso de la biodiversidad en Bangladesh, un país tropical megadiverso en el sureste de Asia. Reunimos casi 45,000 registros georreferenciados únicos para 967 especies y encontramos una media de 27 registros por especie. Casi el 12% de los datos de distribución correspondió a especies amenazadas, que representaban el 27% de todas las especies. También obtuvimos datos para 56 especies deficientes de datos en Bangladesh. Si los datos de las redes sociales se recolectan con cuidado, éstos pueden reducir de forma significativa el vacío de conocimiento para la biodiversidad mundial. Como consecuencia, es una prioridad para la investigación el desarrollo de una herramienta automatizada para extraer e interpretar los datos sobre biodiversidad de las redes sociales.

3.
Sci Rep ; 14(1): 2788, 2024 02 02.
Article in English | MEDLINE | ID: mdl-38307905

ABSTRACT

Western Palearctic treefrogs of the genus Hyla provide an example of a morphologically and ecologically cryptic group. Up to three distinct Hyla species have been proposed as resident in Israel and this number has consistently been subject to taxonomical debates. Here, we analyzed 16S rRNA and COI gene fragments of 658 individuals sampled at 47 pools in nine regions across Israel and the West Bank in order to resolve the taxonomic status of Hyla frogs. We generated both Bayesian and Maximum Likelihood phylogenies, and constructed time-calibrated trees to provide an evolutionary and historical context of sequence variations. We further applied SAMOVA as well as Monmonier's maximum-difference algorithm to study the genetic structure among populations and to identify potential zones acting as barriers to gene flow across locations. Our results revealed two distinct haplogroups for each gene fragment, with 95% CI divergence times dated from 8.9-17.1 Mya (16S) and 7.1-23.6 Mya (COI), respectively. SAMOVA and barrier analyses partitioned the populations into three groups. Our results highlight that, while there are probably only two Hyla species in Israel, one population of one of the species might qualify as a separate evolutionarily significant unit. Our findings elucidate the taxonomic status of Hyla frogs in Israel and provide the basis for determining appropriate management and conservation priorities.


Subject(s)
Anura , DNA, Mitochondrial , Humans , Animals , Phylogeography , Israel , Bayes Theorem , RNA, Ribosomal, 16S/genetics , DNA, Mitochondrial/genetics , Phylogeny , Anura/genetics
5.
Conserv Biol ; 38(1): e14161, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37551776

ABSTRACT

Citizen science plays a crucial role in helping monitor biodiversity and inform conservation. With the widespread use of smartphones, many people share biodiversity information on social media, but this information is still not widely used in conservation. Focusing on Bangladesh, a tropical megadiverse and mega-populated country, we examined the importance of social media records in conservation decision-making. We collated species distribution records for birds and butterflies from Facebook and Global Biodiversity Information Facility (GBIF), grouped them into GBIF-only and combined GBIF and Facebook data, and investigated the differences in identifying critical conservation areas. Adding Facebook data to GBIF data improved the accuracy of systematic conservation planning assessments by identifying additional important conservation areas in the northwest, southeast, and central parts of Bangladesh, extending priority conservation areas by 4,000-10,000 km2 . Community efforts are needed to drive the implementation of the ambitious Kunming-Montreal Global Biodiversity Framework targets, especially in megadiverse tropical countries with a lack of reliable and up-to-date species distribution data. We highlight that conservation planning can be enhanced by including available data gathered from social media platforms.


Registros de las redes sociales para guiar la planeación de la conservación Resumen La ciencia ciudadana es importante para monitorear la biodiversidad e informar la conservación. Con el creciente uso de los teléfonos inteligentes, muchas personas comparten información de la biodiversidad en redes sociales, pero todavía no se usa ampliamente en la conservación. Analizamos la importancia de los registros de las redes sociales para las decisiones de conservación enfocados en Bangladesh, un país tropical megadiverso y mega poblado. Cotejamos los registros de distribución de especies de aves y mariposas en Facebook y Global Biodiversity Information Facility (GBIF), las agrupamos en datos sólo de GBIF o datos combinados de Facebook y GBIF e investigamos las diferencias en la identificación de las áreas de conservación críticas. La combinación de los datos de Facebook con los de GBIF mejoró la precisión de las evaluaciones de la planeación de la conservación sistemática al identificar otras áreas importantes de conservación en el noroeste, sureste y centro de Bangladesh, extendiendo así las áreas prioritarias de conservación en unos 4,000-10,000 km2 . Se requieren esfuerzos comunitarios para impulsar la implementación de los objetivos ambiciosos del Marco Global de Biodiversidad Kunming-Montreal, especialmente en países tropicales que carecen de datos confiables y actuales sobre la distribución de las especies. Destacamos que la planeación de la conservación puede mejorarse si se incluye información tomada de las redes sociales.


Subject(s)
Butterflies , Social Media , Humans , Animals , Conservation of Natural Resources , Biodiversity , Birds
6.
Ecol Evol ; 13(12): e10791, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38094152

ABSTRACT

In animals, the success of particular lineages can be measured in terms of their number of species, the extent of their geographic range, the breadth of their habitats and ecological niches, and the diversity of their morphological and life-history traits. Here, we review the distribution, ecology, morphology and life history of skinks, a diverse lineage of terrestrial vertebrates. We compared key traits between the three subfamilies of skinks, and between skinks and non-scincid lizards. There are currently 1743 described species of skink, which represent 24% of global lizard diversity. Since 2010, 16% of lizard descriptions have been of skinks. The centres of skink diversity are in Australia, New Guinea, southeast Asia, Oceania, Madagascar and central Africa. Compared with non-scincid lizards, skinks have larger distributional ranges, but smaller body sizes. Sexual size dimorphism is rare in skinks. Almost a quarter (23%) of skinks exhibit limb reduction or loss, compared with just 3% of non-scincid lizards. Skinks are more likely to be viviparous (34% of species) compared with non-scincids (13%), and have higher clutch/litter sizes than non-scincids. Although skinks mature later than non-scincids, their longevity is similar to that exhibited by other lizard groups. Most skinks (88%) are active foragers, and they are more likely to be carnivorous than non-scincids. Skinks are more likely to be diurnal or cathemeral than other lizard groups, but they generally have lower field body temperatures compared with non-scincids. The success of skinks appears to be both a result of them hitting upon a winning body plan and ecology, and their capacity to regularly deviate from this body plan and adapt their ecology and life history (e.g. repeated limb reduction and loss, transitions to viviparity) to prevailing conditions.

7.
Evolution ; 77(8): 1829-1841, 2023 07 27.
Article in English | MEDLINE | ID: mdl-37279331

ABSTRACT

Sexual selection has long been thought to increase species diversification. Sexually selected traits, such as sexual signals that contribute to reproductive isolation, were thought to promote diversification. However, studies exploring links between sexually selected traits and species diversification have thus far primarily focused on visual or acoustic signals. Many animals often employ chemical signals (i.e., pheromones) for sexual communications, but large-scale analyses on the role of chemical communications in driving species diversification have been missing. Here, for the first time, we investigate whether traits associated with chemical communications-the presence of follicular epidermal glands-promote diversification across 6,672 lizard species. In most analyses, we found no strong association between the presence of follicular epidermal glands and species diversification rates, either across all lizard species or at lower phylogenetic scales. Previous studies suggest that follicular gland secretions act as species recognition signals that prevent hybridization during speciation in lizards. However, we show that geographic range overlap was no different in sibling species pairs with and without follicular epidermal glands. Together, these results imply that either follicular epidermal glands do not primarily function in sexual communications or sexually selected traits in general (here chemical communication) have a limited effect on species diversification. In our additional analysis accounting for sex-specific differences in glands, we again found no detectable effect of follicular epidermal glands on species diversification rates. Thus, our study challenges the general role of sexually selected traits in broad-scale species diversification patterns.


Subject(s)
Lizards , Male , Animals , Female , Lizards/genetics , Phylogeny , Pheromones , Sex Characteristics , Hybridization, Genetic
8.
Conserv Biol ; 37(5): e14100, 2023 10.
Article in English | MEDLINE | ID: mdl-37070377

ABSTRACT

The first target of the Convention for Biological Diversity (Aichi target 1) was to increase public awareness of the values of biodiversity and actions needed to conserve it-a key prerequisite for other conservation targets. Monitoring success in achieving this target at a global scale has been difficult; however, increased digitization of human life in recent decades has made it easier to measure people's interests at an unprecedented scale and allows for a more comprehensive evaluation of Aichi target 1 than previously attempted. We used Google search volume data for over a thousand search terms related to different aspects of biodiversity and conservation to evaluate global interest in biodiversity and its conservation. We also investigated the correlation of interest in biodiversity and conservation across countries to variables related to biodiversity, economy, demography, research, education, internet use, and presence of environmental organizations. From 2013 to 2020, global searches for biodiversity components increased, driven mostly by searches for charismatic fauna (59% of searches were for mammal species). Searches for conservation actions, driven mostly by searches for national parks, decreased since 2019, likely due to the COVID-19 pandemic. Economic inequality was negatively correlated with interest in biodiversity and conservation, whereas purchasing power was indirectly positively correlated with higher levels of education and research. Our results suggest partial success toward achieving Aichi target 1 in that interest in biodiversity increased widely, but not for conservation. We suggest that increased outreach and education efforts aimed at neglected aspects of biodiversity and conservation are still needed. Popular topics in biodiversity and conservation could be leveraged to increase awareness of other topics with attention to local socioeconomic contexts.


Evaluación del interés mundial en la biodiversidad y la conservación Resumen La primera meta del Convenio sobre la Diversidad Biológica (Meta 1 de Aichi) era aumentar la conciencia pública sobre los valores de la biodiversidad y las acciones necesarias para conservarla, un requisito previo clave para otras metas de conservación. Ha sido difícil monitorear el éxito en la obtención de esta meta a escala mundial; sin embargo, la creciente digitalización de la vida humana en las últimas décadas ha facilitado la medición de los intereses de la gente a una escala sin precedentes y permite una evaluación más exhaustiva de la Meta 1 de Aichi que la que se había intentado previamente. Utilizamos datos sobre el volumen de búsquedas en Google de más de mil términos relacionados con distintos aspectos de la biodiversidad y la conservación para evaluar el interés mundial en la biodiversidad y su conservación. También investigamos la correlación del interés por la biodiversidad y la conservación en los distintos países con variables relacionadas a la biodiversidad, la economía, la demografía, la investigación, la educación, el uso del internet y la presencia de organizaciones ambientalistas. Las búsquedas mundiales sobre los componentes de la biodiversidad aumentaron de 2013 a 2020, impulsadas sobre todo por búsquedas de especies carismática (el 59% de las búsquedas correspondían a especies de mamíferos). Las búsquedas de acciones de conservación, impulsadas principalmente por búsquedas de parques nacionales, han disminuido desde 2019, probablemente debido a la pandemia de COVID-19. La desigualdad económica se correlacionó negativamente con el interés en la biodiversidad y la conservación, mientras que el poder adquisitivo se correlacionó indirectamente de manera positiva con niveles más altos de educación e investigación. Nuestros resultados sugieren un éxito parcial en la obtención de la Meta 1 de Aichi en el sentido de que aumentó ampliamente el interés por la biodiversidad, pero no por la conservación. Sugerimos que se necesitan mayores esfuerzos de divulgación y educación dirigidos a aspectos desatendidos de la biodiversidad y la conservación. Los temas populares de biodiversidad y conservación podrían aprovecharse para aumentar la conciencia sobre otros temas si se presta atención a los contextos socioeconómicos locales.


Subject(s)
COVID-19 , Pandemics , Animals , Humans , Conservation of Natural Resources/methods , Biodiversity , Mammals
9.
Nat Commun ; 14(1): 1389, 2023 03 13.
Article in English | MEDLINE | ID: mdl-36914628

ABSTRACT

Protected Areas (PAs) are the cornerstone of biodiversity conservation. Here, we collated distributional data for >14,000 (~70% of) species of amphibians and reptiles (herpetofauna) to perform a global assessment of the conservation effectiveness of PAs using species distribution models. Our analyses reveal that >91% of herpetofauna species are currently distributed in PAs, and that this proportion will remain unaltered under future climate change. Indeed, loss of species' distributional ranges will be lower inside PAs than outside them. Therefore, the proportion of effectively protected species is predicted to increase. However, over 7.8% of species currently occur outside PAs, and large spatial conservation gaps remain, mainly across tropical and subtropical moist broadleaf forests, and across non-high-income countries. We also predict that more than 300 amphibian and 500 reptile species may go extinct under climate change over the course of the ongoing century. Our study highlights the importance of PAs in providing herpetofauna with refuge from climate change, and suggests ways to optimize PAs to better conserve biodiversity worldwide.


Subject(s)
Climate Change , Ecosystem , Animals , Conservation of Natural Resources , Reptiles , Amphibians , Biodiversity
10.
Proc Natl Acad Sci U S A ; 120(10): e2204892120, 2023 03 07.
Article in English | MEDLINE | ID: mdl-36848563

ABSTRACT

Wild mammals are icons of conservation efforts, yet there is no rigorous estimate available for their overall global biomass. Biomass as a metric allows us to compare species with very different body sizes, and can serve as an indicator of wild mammal presence, trends, and impacts, on a global scale. Here, we compiled estimates of the total abundance (i.e., the number of individuals) of several hundred mammal species from the available data, and used these to build a model that infers the total biomass of terrestrial mammal species for which the global abundance is unknown. We present a detailed assessment, arriving at a total wet biomass of ≈20 million tonnes (Mt) for all terrestrial wild mammals (95% CI 13-38 Mt), i.e., ≈3 kg per person on earth. The primary contributors to the biomass of wild land mammals are large herbivores such as the white-tailed deer, wild boar, and African elephant. We find that even-hoofed mammals (artiodactyls, such as deer and boars) represent about half of the combined mass of terrestrial wild mammals. In addition, we estimated the total biomass of wild marine mammals at ≈40 Mt (95% CI 20-80 Mt), with baleen whales comprising more than half of this mass. In order to put wild mammal biomass into perspective, we additionally estimate the biomass of the remaining members of the class Mammalia. The total mammal biomass is overwhelmingly dominated by livestock (≈630 Mt) and humans (≈390 Mt). This work is a provisional census of wild mammal biomass on Earth and can serve as a benchmark for human impacts.


Subject(s)
Caniformia , Deer , Humans , Animals , Swine , Biomass , Cetacea , Sus scrofa
12.
Nature ; 615(7952): 461-467, 2023 03.
Article in English | MEDLINE | ID: mdl-36653454

ABSTRACT

The frequency, duration, and intensity of extreme thermal events are increasing and are projected to further increase by the end of the century1,2. Despite the considerable consequences of temperature extremes on biological systems3-8, we do not know which species and locations are most exposed worldwide. Here we provide a global assessment of land vertebrates' exposures to future extreme thermal events. We use daily maximum temperature data from 1950 to 2099 to quantify future exposure to high frequency, duration, and intensity of extreme thermal events to land vertebrates. Under a high greenhouse gas emission scenario (Shared Socioeconomic Pathway 5-8.5 (SSP5-8.5); 4.4 °C warmer world), 41.0% of all land vertebrates (31.1% mammals, 25.8% birds, 55.5% amphibians and 51.0% reptiles) will be exposed to extreme thermal events beyond their historical levels in at least half their distribution by 2099. Under intermediate-high (SSP3-7.0; 3.6 °C warmer world) and intermediate (SSP2-4.5; 2.7 °C warmer world) emission scenarios, estimates for all vertebrates are 28.8% and 15.1%, respectively. Importantly, a low-emission future (SSP1-2.6, 1.8 °C warmer world) will greatly reduce the overall exposure of vertebrates (6.1% of species) and can fully prevent exposure in many species assemblages. Mid-latitude assemblages (desert, shrubland, and grassland biomes), rather than tropics9,10, will face the most severe exposure to future extreme thermal events. By 2099, under SSP5-8.5, on average 3,773 species of land vertebrates (11.2%) will face extreme thermal events for more than half a year period. Overall, future extreme thermal events will force many species and assemblages into constant severe thermal stress. Deep greenhouse gas emissions cuts are urgently needed to limit species' exposure to thermal extremes.


Subject(s)
Ecosystem , Extreme Heat , Geographic Mapping , Global Warming , Temperature , Vertebrates , Animals , Greenhouse Gases/adverse effects , Greenhouse Gases/supply & distribution , Mammals , Vertebrates/classification , History, 20th Century , History, 21st Century , Time Factors , Desert Climate , Grassland , Tropical Climate , Birds , Amphibians , Reptiles , Global Warming/prevention & control , Global Warming/statistics & numerical data , Extreme Heat/adverse effects
13.
PLoS Biol ; 20(5): e3001544, 2022 05.
Article in English | MEDLINE | ID: mdl-35617356

ABSTRACT

The Red List of Threatened Species, published by the International Union for Conservation of Nature (IUCN), is a crucial tool for conservation decision-making. However, despite substantial effort, numerous species remain unassessed or have insufficient data available to be assigned a Red List extinction risk category. Moreover, the Red Listing process is subject to various sources of uncertainty and bias. The development of robust automated assessment methods could serve as an efficient and highly useful tool to accelerate the assessment process and offer provisional assessments. Here, we aimed to (1) present a machine learning-based automated extinction risk assessment method that can be used on less known species; (2) offer provisional assessments for all reptiles-the only major tetrapod group without a comprehensive Red List assessment; and (3) evaluate potential effects of human decision biases on the outcome of assessments. We use the method presented here to assess 4,369 reptile species that are currently unassessed or classified as Data Deficient by the IUCN. The models used in our predictions were 90% accurate in classifying species as threatened/nonthreatened, and 84% accurate in predicting specific extinction risk categories. Unassessed and Data Deficient reptiles were considerably more likely to be threatened than assessed species, adding to mounting evidence that these species warrant more conservation attention. The overall proportion of threatened species greatly increased when we included our provisional assessments. Assessor identities strongly affected prediction outcomes, suggesting that assessor effects need to be carefully considered in extinction risk assessments. Regions and taxa we identified as likely to be more threatened should be given increased attention in new assessments and conservation planning. Lastly, the method we present here can be easily implemented to help bridge the assessment gap for other less known taxa.


Subject(s)
Conservation of Natural Resources , Extinction, Biological , Animals , Biodiversity , Endangered Species , Humans , Phylogeny , Reptiles
14.
Nature ; 605(7909): 285-290, 2022 05.
Article in English | MEDLINE | ID: mdl-35477765

ABSTRACT

Comprehensive assessments of species' extinction risks have documented the extinction crisis1 and underpinned strategies for reducing those risks2. Global assessments reveal that, among tetrapods, 40.7% of amphibians, 25.4% of mammals and 13.6% of birds are threatened with extinction3. Because global assessments have been lacking, reptiles have been omitted from conservation-prioritization analyses that encompass other tetrapods4-7. Reptiles are unusually diverse in arid regions, suggesting that they may have different conservation needs6. Here we provide a comprehensive extinction-risk assessment of reptiles and show that at least 1,829 out of 10,196 species (21.1%) are threatened-confirming a previous extrapolation8 and representing 15.6 billion years of phylogenetic diversity. Reptiles are threatened by the same major factors that threaten other tetrapods-agriculture, logging, urban development and invasive species-although the threat posed by climate change remains uncertain. Reptiles inhabiting forests, where these threats are strongest, are more threatened than those in arid habitats, contrary to our prediction. Birds, mammals and amphibians are unexpectedly good surrogates for the conservation of reptiles, although threatened reptiles with the smallest ranges tend to be isolated from other threatened tetrapods. Although some reptiles-including most species of crocodiles and turtles-require urgent, targeted action to prevent extinctions, efforts to protect other tetrapods, such as habitat preservation and control of trade and invasive species, will probably also benefit many reptiles.


Subject(s)
Conservation of Natural Resources , Extinction, Biological , Reptiles , Alligators and Crocodiles , Amphibians , Animals , Biodiversity , Birds , Mammals , Phylogeny , Reptiles/classification , Risk Assessment , Turtles
15.
Trends Ecol Evol ; 37(5): 411-419, 2022 05.
Article in English | MEDLINE | ID: mdl-35181167

ABSTRACT

The ongoing global biodiversity crisis not only involves biological extinctions, but also the loss of experience and the gradual fading of cultural knowledge and collective memory of species. We refer to this phenomenon as 'societal extinction of species' and apply it to both extinct and extant taxa. We describe the underlying concepts as well as the mechanisms and factors that affect this process, discuss its main implications, and identify mitigation measures. Societal extinction is cognitively intractable, but it is tied to biological extinction and thus has important consequences for conservation policy and management. It affects societal perceptions of the severity of anthropogenic impacts and of true extinction rates, erodes societal support for conservation efforts, and causes the loss of cultural heritage.


Subject(s)
Conservation of Natural Resources , Extinction, Biological , Anthropogenic Effects , Biodiversity , Policy
17.
Sci Adv ; 7(42): eabe5582, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34644103

ABSTRACT

Deciphering global trends in phylogenetic endemism is crucial for understanding broad-scale evolutionary patterns and the conservation of key elements of biodiversity. However, knowledge to date on global phylogenetic endemism and its determinants has been lacking. Here, we conduct the first global analysis of phylogenetic endemism patterns of land vertebrates (>30,000 species), their environmental correlates, and threats. We found that low temperature seasonality and high topographic heterogeneity were the main global determinants of phylogenetic endemism. While phylogenetic endemism hotspots cover 22% of Earth, these regions currently have a high human footprint, low natural land cover, minimal protection, and will be greatly affected by climate change. Evolutionarily unique, narrow-range species are crucial for sustaining biodiversity in the face of environmental change. Our global study advances the current understanding of this imperilled yet previously overlooked facet of biodiversity.

20.
Nat Ecol Evol ; 5(11): 1499-1509, 2021 11.
Article in English | MEDLINE | ID: mdl-34429536

ABSTRACT

To meet the ambitious objectives of biodiversity and climate conventions, the international community requires clarity on how these objectives can be operationalized spatially and how multiple targets can be pursued concurrently. To support goal setting and the implementation of international strategies and action plans, spatial guidance is needed to identify which land areas have the potential to generate the greatest synergies between conserving biodiversity and nature's contributions to people. Here we present results from a joint optimization that minimizes the number of threatened species, maximizes carbon retention and water quality regulation, and ranks terrestrial conservation priorities globally. We found that selecting the top-ranked 30% and 50% of terrestrial land area would conserve respectively 60.7% and 85.3% of the estimated total carbon stock and 66% and 89.8% of all clean water, in addition to meeting conservation targets for 57.9% and 79% of all species considered. Our data and prioritization further suggest that adequately conserving all species considered (vertebrates and plants) would require giving conservation attention to ~70% of the terrestrial land surface. If priority was given to biodiversity only, managing 30% of optimally located land area for conservation may be sufficient to meet conservation targets for 81.3% of the terrestrial plant and vertebrate species considered. Our results provide a global assessment of where land could be optimally managed for conservation. We discuss how such a spatial prioritization framework can support the implementation of the biodiversity and climate conventions.


Subject(s)
Carbon , Conservation of Natural Resources , Animals , Biodiversity , Endangered Species , Humans , Vertebrates
SELECTION OF CITATIONS
SEARCH DETAIL
...