Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Cell Mol Med ; 21(9): 2211-2222, 2017 09.
Article in English | MEDLINE | ID: mdl-28345812

ABSTRACT

This study sought to determine the potential role of microRNAs (miRNAs) in the detrimental effects of cigarette smoke on angiogenesis and neovascularization. Using large-scale miRNA profiling and qRT-PCR analyses, we identified let-7f as a pro-angiogenic miRNA which expression is significantly reduced in HUVECs treated with cigarette smoke extracts (CSE), and in the ischemic muscles of mice that are exposed to cigarette smoke (MES). In a mouse model of hindlimb ischaemia, intramuscular injection of let-7f mimic restored ischaemia-induced neovascularization in MES. Doppler flow ratios and capillary density in ischemic muscles were significantly improved in MES treated with let-7f mimic. Clinically, this was associated with reduced ambulatory impairment and hindlimb ischaemic damage. Treatment with let-7f mimic could also rescue pro-angiogenic cell (PAC) number and function (attachment, proliferation, migration) in MES. ALK5 (TGF-ßR1), an important modulator of angiogenesis, is a target of let-7f. Here we show that ALK5 is increased in HUVECs exposed to CSE and in the ischaemic muscles of MES. This is associated with a downstream activation of the anti-angiogenic factors SMAD2/3 and PAI-1. Importantly, treatment with let-7f mimic reduces the expression of ALK5, SMAD2/3 and PAI-1 both in vitro and in vivo. Moreover, let-7f overexpression or ALK5 inhibition can rescue angiogenesis in HUVECs exposed to CSE. Cigarette smoke exposure is associated with reduced expression of let-7f and activation of the anti-angiogenic TGF-ß/ALK5 pathway. Overexpression of let-7f using a miRNA mimic could constitute a novel therapeutic strategy to improve ischaemia-induced neovascularization in pathological conditions.


Subject(s)
Gene Expression Regulation , Ischemia/pathology , MicroRNAs/metabolism , Neovascularization, Pathologic/genetics , Protein Serine-Threonine Kinases/metabolism , Receptors, Transforming Growth Factor beta/metabolism , Smoking/adverse effects , Transforming Growth Factor beta/metabolism , Animals , Cell Count , Female , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Ischemia/genetics , Mice, Inbred C57BL , MicroRNAs/genetics , Neovascularization, Pathologic/pathology , Receptor, Transforming Growth Factor-beta Type I , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...