Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
R Soc Open Sci ; 11(2): 240050, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38420631

ABSTRACT

Body size is key to many life-history processes, including reproduction. Across species, climate change and other stressors have caused reductions in the body size to which animals can grow, called asymptotic size, with consequences for demography. A reduction in mean asymptotic length was documented for critically endangered North Atlantic right whales, in parallel with declines in health and vital rates resulting from human activities and environmental changes. Here, we tested whether smaller body size was associated with lower reproductive output, using a state-space model for individual health, survival and reproduction that quantifies the mechanistic links between these processes. Body size (as represented by the cube of length) was strongly associated with a female's calving probability at each reproductive opportunity. This relationship explained 62% of the variation in calving among reproductive females, along with their decreasing health (20%). The effects of decreasing mean body size on reproductive performance are another concerning indication of the worsening prospects for this species and many others affected by environmental change, requiring a focus of conservation and management interventions on improving conditions that affect reproduction as well as reducing mortality.

2.
Proc Biol Sci ; 289(1987): 20222058, 2022 11 30.
Article in English | MEDLINE | ID: mdl-36448280

ABSTRACT

Assessing cumulative effects of human activities on ecosystems is required by many jurisdictions, but current science cannot meet regulatory demands. Regulations define them as effect(s) of one human action combined with other actions. Here we argue for an approach that evaluates the cumulative risk of multiple stressors for protected wildlife populations within their ecosystems. Monitoring effects of each stressor is necessary but not sufficient to estimate how multiple stressors interact to affect wildlife populations. Examining the mechanistic pathways, from cellular to ecological, by which stressors affect individuals can help prioritize stressors and interpret how they interact. Our approach uses health indicators to accumulate the effects of stressors on individuals and to estimate changes in vital rates, driving population status. We advocate using methods well-established in human health and integrating them into ecosystem-based management to protect the health of commercially and culturally important wildlife populations and to protect against risk of extinction for threatened species. Our approach will improve abilities to conserve and manage ecosystems but will also demand significant increases in research and monitoring effort. We advocate for increased investment proportional to the economic scale of human activities in the Anthropocene and their pervasive effects on ecology and biodiversity.


Subject(s)
Animals, Wild , Ecosystem , Humans , Animals , Biodiversity , Endangered Species
3.
Sci Total Environ ; 821: 153322, 2022 May 15.
Article in English | MEDLINE | ID: mdl-35074373

ABSTRACT

Wildlife populations and their habitats are exposed to an expanding diversity and intensity of stressors caused by human activities, within the broader context of natural processes and increasing pressure from climate change. Estimating how these multiple stressors affect individuals, populations, and ecosystems is thus of growing importance. However, their combined effects often cannot be predicted reliably from the individual effects of each stressor, and we lack the mechanistic understanding and analytical tools to predict their joint outcomes. We review the science of multiple stressors and present a conceptual framework that captures and reconciles the variety of existing approaches for assessing combined effects. Specifically, we show that all approaches lie along a spectrum, reflecting increasing assumptions about the mechanisms that regulate the action of single stressors and their combined effects. An emphasis on mechanisms improves analytical precision and predictive power but could introduce bias if the underlying assumptions are incorrect. A purely empirical approach has less risk of bias but requires adequate data on the effects of the full range of anticipated combinations of stressor types and magnitudes. We illustrate how this spectrum can be formalised into specific analytical methods, using an example of North Atlantic right whales feeding on limited prey resources while simultaneously being affected by entanglement in fishing gear. In practice, case-specific management needs and data availability will guide the exploration of the stressor combinations of interest and the selection of a suitable trade-off between precision and bias. We argue that the primary goal for adaptive management should be to identify the most practical and effective ways to remove or reduce specific combinations of stressors, bringing the risk of adverse impacts on populations and ecosystems below acceptable thresholds.


Subject(s)
Anthropogenic Effects , Climate Change , Ecosystem , Animals , Conservation of Natural Resources , Water Pollution , Whales
4.
Dis Aquat Organ ; 143: 205-226, 2021 Feb 25.
Article in English | MEDLINE | ID: mdl-33629663

ABSTRACT

Whaling has decimated North Atlantic right whales Eubalaena glacialis (NARW) since the 11th century and southern right whales E. australis (SRW) since the 19th century. Today, NARWs are Critically Endangered and decreasing, whereas SRWs are recovering. We review NARW health assessment literature, NARW Consortium databases, and efforts and limitations to monitor individual and species health, survival, and fecundity. Photographs are used to track individual movement and external signs of health such as evidence of vessel and entanglement trauma. Post-mortem examinations establish cause of death and determine organ pathology. Photogrammetry is used to assess growth rates and body condition. Samples of blow, skin, blubber, baleen and feces quantify hormones that provide information on stress, reproduction, and nutrition, identify microbiome changes, and assess evidence of infection. We also discuss models of the population consequences of multiple stressors, including the connection between human activities (e.g. entanglement) and health. Lethal and sublethal vessel and entanglement trauma have been identified as major threats to the species. There is a clear and immediate need for expanding trauma reduction measures. Beyond these major concerns, further study is needed to evaluate the impact of other stressors, such as pathogens, microbiome changes, and algal and industrial toxins, on NARW reproductive success and health. Current and new health assessment tools should be developed and used to monitor the effectiveness of management measures and will help determine whether they are sufficient for a substantive species recovery.


Subject(s)
Reproduction , Whales , Animals , Feces
5.
Conserv Physiol ; 9(1): coaa133, 2021.
Article in English | MEDLINE | ID: mdl-33489237

ABSTRACT

As studies quantifying steroid hormones in marine mammal blubber progress, methodological refinements may improve the utility and consistency of blubber hormone measurements. This study advances blubber extraction methodologies by testing a simplified extraction protocol that reduces time and complexity compared to a protocol widely used in cetacean blubber studies. Using blubber samples archived from remote biopsy (n = 21 live whales) and necropsy collection (n = 7 dead whales) of North Atlantic right whales (NARW; Eubalaena glacialis) of known life history states, we performed analytical and biological validations to assess the feasibility of measuring reproductive (testosterone, progesterone) and glucocorticoid (cortisol) hormones in blubber via enzyme immunoassay following the simplified extraction. Analytical validations (parallelism, accuracy, extraction efficiency, repeatability) showed the simplified extraction produced similar results to the extended protocol, offering a more efficient and consistent technique. In live, apparently healthy whales, blubber testosterone concentrations (mean ± SE) were significantly higher in males (2.02 ± 0.36 ng/g) compared to females (0.81 ± 0.15 ng/g). Blubber progesterone was highest in a confirmed pregnant female (60.3 ng/g), which was 12-fold greater than the mean concentration of non-pregnant females (4.56 ± 0.88 ng/g). Blubber cortisol concentrations in whales that died from anthropogenic causes averaged 5.31 ± 2.28 ng/g, whereas most live, healthy whales had cortisol values below 1 ng/g. Among living whales, a whale actively entangled in fishing gear had the highest blubber cortisol measurement (3.51 ng/g), exhibiting levels similar to whales that died from acute entanglement (2.88 ± 0.42 ng/g). Overall, the highest blubber cortisol concentration (18.0 ng/g) was measured in a dead whale with a severe chronic entanglement, approximately 30-fold greater than mean blubber cortisol of apparently healthy whales (0.58 ± 0.11 ng/g). The methodological approach presented here provides a reference for researchers interested in an alternative, streamlined technique for hormone extraction of cetacean blubber and contributes to the diverse tool set for stress and reproductive assessments of endangered NARWs.

6.
Gen Comp Endocrinol ; 280: 24-34, 2019 09 01.
Article in English | MEDLINE | ID: mdl-30951726

ABSTRACT

Fecal hormone analysis shows high potential for noninvasive assessment of population-level patterns in stress and reproduction of marine mammals. However, the marine environment presents unique challenges for fecal sample collection. Data are still lacking on collection methodology and assay validations for most species, particularly for those mysticete whales that have variable diets. In this study we tested collection techniques for fecal samples of free-swimming humpback whales (Megaptera novaeangliae), and validated immunoassays for five steroid and thyroid hormones. Resulting data were used for preliminary physiological validations, i.e., comparisons to independently confirmed sex and reproductive state. Pregnant females had significantly higher fecal progestins and glucocorticoids than did other demographic categories of whales. Two possible cases of previously undetected pregnancies were noted. Males had significantly higher fecal testosterone metabolites than nonpregnant females. Fecal glucocorticoids were significantly elevated in pregnant females and mature males compared to nonpregnant females. Calf fecal samples had elevated concentrations of all fecal hormones. Fecal thyroid hormones showed a significant seasonal decline from spring to summer. Though sample sizes were small, and sampling was necessarily opportunistic, these patterns indicate that noninvasive fecal hormone analysis may facilitate studies of reproduction, stress and potentially energetics in humpback whales.


Subject(s)
Feces/chemistry , Hormones/metabolism , Humpback Whale/physiology , Stress, Physiological , Animals , Female , Glucocorticoids/metabolism , Male , Metabolome , Pregnancy , Progestins/metabolism , Reproducibility of Results , Reproduction/physiology , Swimming/physiology , Testosterone/metabolism , Thyroid Hormones/metabolism
7.
Sci Rep ; 8(1): 10031, 2018 07 17.
Article in English | MEDLINE | ID: mdl-30018379

ABSTRACT

Exhaled breath analysis is a non-invasive assessment tool that has shown promise in human diagnostics, and could greatly benefit research, management, and conservation of large whales. However, hormone assessment of whale respiratory vapor (blow) has been challenged by variable water content and unknown total volume of collected samples. To advance this technique, we investigated urea (a compound present in narrow range in circulation) as a normalizing factor to correct for blow sample concentration. Normalized progesterone, testosterone, and cortisol concentrations of 100 blow samples from 46 photo-identified North Atlantic right whales (Eubalaena glacialis) were more biologically relevant compared to absolute estimates, varying by sex, age class, or individual. Progesterone was elevated in adult females compared with other cohorts and highest in one independently confirmed pregnant female. For both sexes, testosterone was two-fold higher in reproductively mature whales but studied adult females showed the widest variation. Cortisol was present in relatively low concentrations in blow and demonstrated variation between individual whales, suggesting potential for studies of individual differences in adrenal activity. Incorporation of methodologies that normalize sample concentration are essential for blow hormone analysis of free-swimming whales, and measurement of urea could be used to optimize non-invasive physiological assessment of whales.


Subject(s)
Breath Tests/methods , Exhalation/physiology , Hydrocortisone/analysis , Progesterone/analysis , Testosterone/analysis , Whales/physiology , Animals , Body Fluids , Cohort Studies , Feces/chemistry , Female , Male , Pregnancy , Reproduction/physiology , Respiratory System/metabolism , Urea/analysis
8.
Gen Comp Endocrinol ; 254: 50-59, 2017 12 01.
Article in English | MEDLINE | ID: mdl-28919447

ABSTRACT

Research into stress physiology of mysticete whales has been hampered by difficulty in obtaining repeated physiological samples from individuals over time. We investigated whether multi-year longitudinal records of glucocorticoids can be reconstructed from serial sampling along full-length baleen plates (representing ∼10years of baleen growth), using baleen recovered from two female North Atlantic right whales (Eubalaena glacialis) of known reproductive history. Cortisol and corticosterone were quantified with immunoassay of subsamples taken every 4cm (representing ∼60d time intervals) along a full-length baleen plate from each female. In both whales, corticosterone was significantly elevated during known pregnancies (inferred from calf sightings and necropsy data) as compared to intercalving intervals; cortisol was significantly elevated during pregnancies in one female but not the other. Within intercalving intervals, corticosterone was significantly elevated during the first year (lactation year) and/or the second year (post-lactation year) as compared to later years of the intercalving interval, while cortisol showed more variable patterns. Cortisol occasionally showed brief high elevations ("spikes") not paralleled by corticosterone, suggesting that the two glucocorticoids might be differentially responsive to certain stressors. Generally, immunoreactive corticosterone was present in higher concentration in baleen than immunoreactive cortisol; corticosterone:cortisol ratio was usually >4 and was highly variable in both individuals. Further investigation of baleen cortisol and corticosterone profiles could prove fruitful for elucidating long-term, multi-year patterns in stress physiology of large whales, determined retrospectively from stranded or archived specimens.


Subject(s)
Animal Structures/metabolism , Corticosterone/metabolism , Hydrocortisone/metabolism , Whales/anatomy & histology , Whales/metabolism , Animals , Female , Glucocorticoids/metabolism , Longitudinal Studies , Pregnancy , Reproducibility of Results
9.
Gen Comp Endocrinol ; 252: 103-110, 2017 10 01.
Article in English | MEDLINE | ID: mdl-28757434

ABSTRACT

Until now, physiological stress assessment of large whales has predominantly focused on adrenal glucocorticoid (GC) measures. Elevated GC concentrations in feces (fGC) are known to reflect stressful disturbances, such as fishing gear entanglement and human-generated underwater noise, in North Atlantic right whales (Eubalaena glacialis). However, there can be considerable variation in GC production as a function of sex and life history stage, which may confound the interpretation of fGC levels. Additionally, GC antibodies used in immunoassays can cross-react with other fecal metabolites (i.e., non-target steroids), potentially influencing fGC data. Here, aldosterone concentrations (fALD; aldosterone and related metabolites) were measured in fecal samples from right whales (total n=315 samples), including samples from identified individuals of known life history (n=82 individual whales), to evaluate its utility as a complementary biomarker to fGC for identifying adrenal activation. Concentrations of fALD were positively correlated with fGCs in right whales (r=0.59, P<0.001), suggesting concurrent secretion of these hormones by the adrenal gland. However, fALD levels were less influenced by concentrations of reproductive steroids in feces, minimizing the potential confounder of assay cross-reactivity in samples with highly skewed hormone ratios. Across different life history states for right whales, fALD concentrations showed similar patterns to those reported for fGC, with higher levels in pregnant females (35.9±7.6ng/g) followed by reproductively mature males (9.5±0.9ng/g) (P<0.05), providing further evidence of elevated adrenal activation in these groups of whales. The addition of fALD measurement as a biomarker of adrenal activation may help distinguish between intrinsic and external causes of stress hormone elevations in large whales, as well as other free-living wildlife species, providing a more comprehensive approach for associating adrenal activation with specific natural and anthropogenic stressors.


Subject(s)
Adrenal Glands/metabolism , Aldosterone/metabolism , Feces/chemistry , Glucocorticoids/metabolism , Whales/blood , Animals , Biomarkers/metabolism , Female , Male , Radioimmunoassay , Reproducibility of Results
10.
Conserv Physiol ; 5(1): cox006, 2017.
Article in English | MEDLINE | ID: mdl-28852509

ABSTRACT

Immunoassay of hormone metabolites extracted from faecal samples of free-ranging large whales can provide biologically relevant information on reproductive state and stress responses. North Atlantic right whales (Eubalaena glacialis Müller 1776) are an ideal model for testing the conservation value of faecal metabolites. Almost all North Atlantic right whales are individually identified, most of the population is sighted each year, and systematic survey effort extends back to 1986. North Atlantic right whales number <500 individuals and are subject to anthropogenic mortality, morbidity and other stressors, and scientific data to inform conservation planning are recognized as important. Here, we describe the use of classification trees as an alternative method of analysing multiple-hormone data sets, building on univariate models that have previously been used to describe hormone profiles of individual North Atlantic right whales of known reproductive state. Our tree correctly classified the age class, sex and reproductive state of 83% of 112 faecal samples from known individual whales. Pregnant females, lactating females and both mature and immature males were classified reliably using our model. Non-reproductive [i.e. 'resting' (not pregnant and not lactating) and immature] females proved the most unreliable to distinguish. There were three individual males that, given their age, would traditionally be considered immature but that our tree classed as mature males, possibly calling for a re-evaluation of their reproductive status. Our analysis reiterates the importance of considering the reproductive state of whales when assessing the relationship between cortisol concentrations and stress. Overall, these results confirm findings from previous univariate statistical analyses, but with a more robust multivariate approach that may prove useful for the multiple-analyte data sets that are increasingly used by conservation physiologists.

11.
Conserv Physiol ; 4(1): cow024, 2016.
Article in English | MEDLINE | ID: mdl-27928506

ABSTRACT

Studies are progressively showing that vital physiological data may be contained in the respiratory vapour (blow) of cetaceans. Nonetheless, fundamental methodological issues need to be addressed before hormone analysis of blow can become a reliable technique. In this study, we performed controlled experiments in a laboratory setting, using known doses of pure parent hormones, to validate several technical factors that may play a crucial role in hormone analyses. We evaluated the following factors: (i) practical field storage of samples on small boats during daylong trips; (ii) efficiency of hormone extraction methods; and (iii) assay interference of different sampler types (i.e. veil nylon, nitex nylon mesh and polystyrene dish). Sampling materials were dosed with mock blow samples of known mixed hormone concentrations (progesterone, 17ß-estradiol, testosterone, cortisol, aldosterone and triiodothyronine), designed to mimic endocrine profiles characteristic of pregnant females, adult males, an adrenal glucocorticoid response or a zero-hormone control (distilled H2O). Results showed that storage of samples in a cooler on ice preserved hormone integrity for at least 6 h (P = 0.18). All sampling materials and extraction methods yielded the correct relative patterns for all six hormones. However, veil and nitex mesh produced detectable assay interference (mean 0.22 ± 0.04 and 0.18 ± 0.03 ng/ml, respectively), possibly caused by some nylon-based component affecting antibody binding. Polystyrene dishes were the most efficacious sampler for accuracy and precision (P < 0.001), but required an ethanol rinse for improved progesterone recovery (increased 81%; P < 0.001). Awareness of assay interference from exogenous materials is crucial to future studies. This study establishes critical groundwork to help ensure that hormones can be measured accurately in samples obtained from field collections of whale blow.

12.
Conserv Physiol ; 4(1): cow022, 2016.
Article in English | MEDLINE | ID: mdl-27413532

ABSTRACT

Leatherback turtles (Dermochelys coriacea) are exposed to many anthropogenic stressors, yet almost no data on stress physiology exist for this species. As a first step toward understanding the physiological responses of leatherback turtles to stress, and with the particular goal of assessment of the effect of capture, we quantified corticosterone (an adrenal stress hormone) and thyroxine (a regulator of metabolic rate, often inhibited by chronic stress) in 17 healthy leatherback turtles captured at sea for scientific study, with comparisons to 15 'distressed' leatherbacks that were found entangled in fishing gear (n = 8), confined in a weir net (n = 1) or stranded on shore (n = 6). Distressed leatherbacks had significantly elevated corticosterone (mean ± SEM 10.05 ± 1.72 ng/ml, median 8.38 ng/ml) and free thyroxine (mean 0.86 ± 0.37 pg/ml, median 0.08 pg/ml) compared with healthy leatherbacks sampled immediately before release (after ∼40 min of handling; corticosterone, mean 4.97 ± 0.62 ng/ml, median 5.21 ng/ml; and free thyroxine, mean 0.05 ± 0.05 pg/ml, median 0.00 pg/ml). The elevated thyroxine in distressed turtles compared with healthy turtles might indicate an energetic burden of entanglement and stranding. Six of the healthy leatherbacks were sampled twice, at ∼25 and ∼50 min after the time of first disturbance. In all six individuals, corticosterone was higher in the later sample (earlier sample, mean 2.74 ± 0.88 ng/ml, median 2.61 ng/ml; later sample, mean 5.43 ± 1.29 ng/ml, median 5.38 ng/ml), indicating that capture and handling elicit an adrenal stress response in this species. However, the corticosterone elevation after capture appeared relatively mild compared with the corticosterone concentrations of the entangled and stranded turtles. The findings suggest that capture and handling using the protocols described (e.g. capture duration <1 h) might represent only a mild stressor, whereas entanglement and stranding might represent moderate to severe stressors.

13.
Conserv Physiol ; 4(1): cow014, 2016.
Article in English | MEDLINE | ID: mdl-27293762

ABSTRACT

Reproduction of mysticete whales is difficult to monitor, and basic parameters, such as pregnancy rate and inter-calving interval, remain unknown for many populations. We hypothesized that baleen plates (keratinous strips that grow downward from the palate of mysticete whales) might record previous pregnancies, in the form of high-progesterone regions in the sections of baleen that grew while the whale was pregnant. To test this hypothesis, longitudinal baleen progesterone profiles from two adult female North Atlantic right whales (Eubalaena glacialis) that died as a result of ship strike were compared with dates of known pregnancies inferred from calf sightings and post-mortem data. We sampled a full-length baleen plate from each female at 4 cm intervals from base (newest baleen) to tip (oldest baleen), each interval representing ∼60 days of baleen growth, with high-progesterone areas then sampled at 2 or 1 cm intervals. Pulverized baleen powder was assayed for progesterone using enzyme immunoassay. The date of growth of each sampling location on the baleen plate was estimated based on the distance from the base of the plate and baleen growth rates derived from annual cycles of stable isotope ratios. Baleen progesterone profiles from both whales showed dramatic elevations (two orders of magnitude higher than baseline) in areas corresponding to known pregnancies. Baleen hormone analysis shows great potential for estimation of recent reproductive history, inter-calving interval and general reproductive biology in this species and, possibly, in other mysticete whales.

14.
Adv Exp Med Biol ; 875: 977-85, 2016.
Article in English | MEDLINE | ID: mdl-26611058

ABSTRACT

Right whales are vulnerable to many sources of anthropogenic disturbance including ship strikes, entanglement with fishing gear, and anthropogenic noise. The effect of these factors on individual health is unclear. A statistical model using photographic evidence of health was recently built to infer the true or hidden health of individual right whales. However, two important prior assumptions about the role of missing data and unexplained variance on the estimates were not previously assessed. Here we tested these factors by varying prior assumptions and model formulation. We found sensitivity to each assumption and used the output to make guidelines on future model formulation.


Subject(s)
Health , Models, Theoretical , Whales/physiology , Animals
15.
Integr Comp Biol ; 55(4): 577-86, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26116203

ABSTRACT

The North Atlantic right whale, Eubalaena glacialis (NARW), a critically endangered species that has been under intensive study for nearly four decades, provides an excellent case study for applying modern methods of conservation physiology to large whales. By combining long-term sighting histories of known individuals with physiological data from newer techniques (e.g., body condition estimated from photographs; endocrine status derived from fecal samples), physiological state and levels of stress can be estimated despite the lack of any method for nonlethal capture of large whales. Since traditional techniques for validating blood assays cannot be used in large whales, assays of fecal hormones have been validated using information on age, sex, and reproductive state derived from an extensive NARW photo-identification catalog. Using this approach, fecal glucocorticoids have been found to vary dramatically with reproductive state. It is therefore essential that glucocorticoid data be interpreted in conjunction with reproductive data. A case study correlating glucocorticoids with chronic noise is presented as an example. Keys to a successful research program for this uncatchable species have included: consistent population monitoring over decades, data-sharing across institutions, an extensive photo-identification catalog that documents individual histories, and consistent efforts at noninvasive collection of samples over years. Future research will require flexibility to adjust to changing distributions of populations.


Subject(s)
Conservation of Natural Resources , Whales/physiology , Animal Distribution , Animals , Atlantic Ocean , Feces/chemistry , Glucocorticoids/chemistry , Glucocorticoids/metabolism , Species Specificity , Stress, Physiological
16.
Conserv Physiol ; 2(1): cou030, 2014.
Article in English | MEDLINE | ID: mdl-27293651

ABSTRACT

Arctic marine mammals are facing increasing levels of many anthropogenic stressors. Novel tools are needed for assessment of stress physiology and potential impacts of these stressors on health, reproduction and survival. We have investigated baleen as a possible novel tissue type for retrospective assessment of stress and reproductive hormones. We found that pulverized baleen powder from bowhead whales (Balaena mysticetus) contained immunoreactive cortisol and progesterone that were detectable with commercially available enzyme immunoassay kits. Both assays passed parallelism and accuracy validations using baleen extracts. We analysed cortisol and progesterone at the base of the baleen plate (most recently grown baleen) from 16 bowhead whales of both sexes. For a subset of 11 whales, we also analysed older baleen from 10, 20 and 30 cm distal to the base of the baleen plate. Immunoreactive cortisol and progesterone were detectable in all baleen samples tested. In base samples, females had significantly higher concentrations of cortisol and progesterone compared with males. Cortisol concentrations in older baleen (10, 20 and 30 cm locations) were significantly lower than at the base and did not exhibit correlations with age-class or sex. Progesterone concentrations were significantly higher in females than in males at all baleen locations tested and were significantly higher in pregnant females than in non-pregnant females. Four of five mature females showed dramatic variation in progesterone concentrations at different locations along the baleen plate that may be indicative of previous pregnancies or luteal phases. In contrast, all males and all immature females had uniformly low progesterone. Baleen hormone analysis is a novel approach that, with further methodological development, may be useful for determining individual longitudinal profiles of reproductive cycles and stress responses.

17.
PLoS One ; 8(6): e64166, 2013.
Article in English | MEDLINE | ID: mdl-23762237

ABSTRACT

Body condition is an indicator of health, and it plays a key role in many vital processes for mammalian species. While evidence of individual body condition can be obtained, these observations provide just brief glimpses into the health state of the animal. An analytical framework is needed for understanding how health of animals changes over space and time.Through knowledge of individual health we can better understand the status of populations. This is particularly important in endangered species, where the consequences of disruption of critical biological functions can push groups of animals rapidly toward extinction. Here we built a state-space model that provides estimates of movement, health, and survival. We assimilated 30+ years of photographic evidence of body condition and three additional visual health parameters in individual North Atlantic right whales, together with survey data, to infer the true health status as it changes over space and time. We also included the effect of reproductive status and entanglement status on health. At the population level, we estimated differential movement patterns in males and females. At the individual level, we estimated the likely animal locations each month. We estimated the relationship between observed and latent health status. Observations of body condition, skin condition, cyamid infestation on the blowholes, and rake marks all provided measures of the true underlying health. The resulting time series of individual health highlight both normal variations in health status and how anthropogenic stressors can affect the health and, ultimately, the survival of individuals. This modeling approach provides information for monitoring of health in right whales, as well as a framework for integrating observational data at the level of individuals up through the health status of the population. This framework can be broadly applied to a variety of systems - terrestrial and marine - where sporadic observations of individuals exist.


Subject(s)
Ectoparasitic Infestations/veterinary , Endangered Species , Reproduction/physiology , Whales/parasitology , Animal Migration/physiology , Animals , Atlantic Ocean , Bayes Theorem , Crustacea , Ectoparasitic Infestations/parasitology , Endangered Species/statistics & numerical data , Environment , Female , Longevity , Male , Population Dynamics
18.
Conserv Physiol ; 1(1): cot006, 2013.
Article in English | MEDLINE | ID: mdl-27293590

ABSTRACT

Large whales are subjected to a variety of conservation pressures that could be better monitored and managed if physiological information could be gathered readily from free-swimming whales. However, traditional approaches to studying physiology have been impractical for large whales, because there is no routine method for capture of the largest species and there is presently no practical method of obtaining blood samples from free-swimming whales. We review the currently available techniques for gathering physiological information on large whales using a variety of non-lethal and minimally invasive (or non-invasive) sample matrices. We focus on methods that should produce information relevant to conservation physiology, e.g. measures relevant to stress physiology, reproductive status, nutritional status, immune response, health, and disease. The following four types of samples are discussed: faecal samples, respiratory samples ('blow'), skin/blubber samples, and photographs. Faecal samples have historically been used for diet analysis but increasingly are also used for hormonal analyses, as well as for assessment of exposure to toxins, pollutants, and parasites. Blow samples contain many hormones as well as respiratory microbes, a diverse array of metabolites, and a variety of immune-related substances. Biopsy dart samples are widely used for genetic, contaminant, and fatty-acid analyses and are now being used for endocrine studies along with proteomic and transcriptomic approaches. Photographic analyses have benefited from recently developed quantitative techniques allowing assessment of skin condition, ectoparasite load, and nutritional status, along with wounds and scars from ship strikes and fishing gear entanglement. Field application of these techniques has the potential to improve our understanding of the physiology of large whales greatly, better enabling assessment of the relative impacts of many anthropogenic and ecological pressures.

19.
J Zoo Wildl Med ; 43(3): 479-93, 2012 Sep.
Article in English | MEDLINE | ID: mdl-23082511

ABSTRACT

Kemp's ridley sea turtles (Lepidochelys kempii), a critically endangered species, frequently strand on the shores of Cape Cod (Massachusetts, USA) in late autumn in a state of "cold-stunning" exhibiting low body temperature and related clinical issues. Stranded turtles are transported to the New England Aquarium (Boston, Massachusetts, USA) for treatment and rehabilitation. This study tested the hypothesis that cold-stunned sea turtles might exhibit high corticosterone ("stress hormone") or low thyroxine (which is often affected by temperature), or both, and that monitoring of both hormones may be useful for assessing recovery. In a retrospective analysis, 87 archived plasma samples were assayed from 56 cold-stunned juvenile Kemp's ridley sea turtles for corticosterone and free thyroxine (fT4). Upon admission, mean corticosterone was the highest yet reported for a population of sea turtles (39.3 +/- 2.5 ng/ml; mean +/- standard error of the mean [SEM]) and fT4 was usually undetectable. On admission, corticosterone was negatively correlated with white blood cell count but was not correlated with blood glucose. There were no differences in either hormone between survivors and nonsurvivors on admission. After 18+ days in recovery, surviving turtles' corticosterone dropped significantly to levels typical of baseline in other species (0.9 +/- 1.0 ng/ml) while fT4 increased significantly (1.3 +/- 1.5 pg/ml). During recovery, corticosterone was positively correlated with blood glucose and was not correlated with white blood cell count. Turtles that showed persistent deficits in feeding, activity, or both during recovery had significantly lower fT4 than did turtles with no such deficits. The "high corticosterone, low fT4" endocrine profile seen on admission may be a useful marker of cold-stunning in this and other species. Further studies are necessary to determine whether low thyroid hormones play a causal role in deficits in feeding and activity during recovery. Monitoring of both hormones may be useful for triage, monitoring of recovery, and assessing readiness for release.


Subject(s)
Cold Temperature , Corticosterone/blood , Thyroxine/blood , Turtles , Animals , Behavior, Animal , Blood Glucose , Endangered Species , Leukocyte Count , Retrospective Studies
20.
Proc Biol Sci ; 279(1737): 2363-8, 2012 Jun 22.
Article in English | MEDLINE | ID: mdl-22319129

ABSTRACT

Baleen whales (Mysticeti) communicate using low-frequency acoustic signals. These long-wavelength sounds can be detected over hundreds of kilometres, potentially allowing contact over large distances. Low-frequency noise from large ships (20-200 Hz) overlaps acoustic signals used by baleen whales, and increased levels of underwater noise have been documented in areas with high shipping traffic. Reported responses of whales to increased noise include: habitat displacement, behavioural changes and alterations in the intensity, frequency and intervals of calls. However, it has been unclear whether exposure to noise results in physiological responses that may lead to significant consequences for individuals or populations. Here, we show that reduced ship traffic in the Bay of Fundy, Canada, following the events of 11 September 2001, resulted in a 6 dB decrease in underwater noise with a significant reduction below 150 Hz. This noise reduction was associated with decreased baseline levels of stress-related faecal hormone metabolites (glucocorticoids) in North Atlantic right whales (Eubalaena glacialis). This is the first evidence that exposure to low-frequency ship noise may be associated with chronic stress in whales, and has implications for all baleen whales in heavy ship traffic areas, and for recovery of this endangered right whale population.


Subject(s)
Noise/adverse effects , Ships , Stress, Physiological/physiology , Whales/physiology , Animals , Atlantic Ocean , Feces/chemistry , Female , Glucocorticoids/analysis , Male , Nova Scotia , Radioimmunoassay , September 11 Terrorist Attacks
SELECTION OF CITATIONS
SEARCH DETAIL
...