Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
Add more filters










Publication year range
1.
Ground Water ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38924523

ABSTRACT

This study advances a methodology to estimate effective apertures of fractures in glacial tills based on dye tracer infiltration tests and numerical simulations. The approach uses the visible penetration depth of the dye tracer along fracture flow paths as primary information to calculate effective fracture apertures. Further data used in the calculation are the dye tracer input concentration and retardation, the duration of the tracer injection, and the hydraulic gradient applied to control the infiltrating water fluxes. The method does not require measurement of hydraulic conductivity for the fractured till and enables direct observation of flow and transport patterns within the fractures (e.g., uniform flow and dye tracer distribution, channeling due to aperture variability, and presence of biogenic macropores in fractures). The approach was successfully verified by using the estimated effective fracture aperture values in Large Undisturbed Columns (LUCs) to consistently simulate both the observed LUC effluent breakthrough of a conservative bromide tracer and the water fluxes with the hydraulic gradient applied in the experiments. Sensitivity analyses revealed that estimation of small effective fracture apertures (<10 µm) required accurate determination of the dye tracer retardation factor. By contrast, in the case of larger effective apertures (>20 µm), the sensitivity of the estimated effective fracture aperture to variations in the porous material and solute transport parameters was low compared to the dominant sensitivity to the water flow through the fractures (cubic relation between flow and aperture). The proposed approach may be extended beyond laboratory applications and assist in characterizing field-scale fracture networks.

2.
Environ Sci Technol ; 58(3): 1731-1740, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38206803

ABSTRACT

Perfluorooctanesulfonate (PFOS) has become a major concern due to its widespread occurrence in the environment and severe toxic effects. In this study, we investigate PFOS sorption on goethite surfaces under different water chemistry conditions to understand the impact of variable groundwater chemistry. Our investigation is based on multiple lines of evidence, including (i) a series of sorption experiments with varying pH, ionic strength, and PFOS initial concentration, (ii) IR spectroscopy analysis, and (iii) surface complexation modeling. PFOS was found to bind to goethite through a strong hydrogen-bonded (HB) complex and a weaker outer-sphere complex involving Na+ coadsorption (OS-Na+). The pH and ionic strength of the solution had a nontrivial impact on the speciation and coexistence of these surface complexes. Acidic conditions and low ionic strength promoted hydrogen bonding between the sulfonate headgroup and protonated hydroxo surface sites. Higher electrolyte concentrations and pH values hindered the formation of strong hydrogen bonds upon the formation of a ternary PFOS-Na+-goethite outer-sphere complex. The findings of this study illuminate the key control of variable solution chemistry on PFOS adsorption to mineral surfaces and the importance to develop surface complexation models integrating mechanistic insights for the accurate prediction of PFOS mobility and environmental fate.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Iron Compounds , Water/chemistry , Minerals/chemistry , Alkanesulfonic Acids/chemistry , Iron Compounds/chemistry , Adsorption , Hydrogen-Ion Concentration
3.
J Contam Hydrol ; 259: 104261, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37925812

ABSTRACT

Electrokinetic techniques employ direct current electric fields to enhance the transport of amendments in low permeability porous media and have been demonstrated effective for in situ remediation of both organic contaminants and heavy metals. The application of electric potential gradients give rise to coupled chemical, hydraulic and electric fluxes, which are at the basis of the main transport mechanisms: electromigration and electroosmosis. Previous research has highlighted the significant impacts of charge interactions and fluid composition, including temperature-dependent properties such as electrolyte conductivity and density, on these transport phenomena. However, current models of electrokinetic applications often assume isothermal conditions and overlook the production of heat resulting from Joule heating. This study provides a detailed model-based investigation, systematically exploring the effects of temperature on electrokinetic conservative and reactive transport in porous media. By incorporating temperature-dependent material properties and progressively investigating the impact of temperature on each transport mechanism, we analyze the effects of temperature variations in both 1D and 2D systems. The study reveals how temperature dynamically influences the physical, chemical and electrostatic processes controlling electrokinetic transport. A temperature increase results in a higher speed of amendments delivery by both electromigration and electroosmosis and increases the kinetics of degradation reactions. The simulations also reveal a feedback mechanism in which higher aqueous conductivity results in increased Joule heating, leading to a faster temperature rise and, subsequently, to higher electrolyte conductivity. Finally, we estimate the electric energy requirements of the system at varying temperatures and show how these changes impact the rate of contaminant removal.


Subject(s)
Electricity , Hot Temperature , Temperature , Porosity , Electrolytes
4.
J Contam Hydrol ; 258: 104243, 2023 09.
Article in English | MEDLINE | ID: mdl-37696230

ABSTRACT

Highly transient boundary conditions affect mixing of dissolved solutes in groundwater. An example of these transient boundary conditions occurs at the surface water-groundwater interface, where the water level in rivers can change rapidly due to the operation of hydropower plants, leading to a regime known as hydropeaking. Inspired by this phenomenon, this work studies at laboratory scale the effects of fluctuating surface water bodies on solute transport in aquifers. We performed flow-through experiments at two different flow velocities and under steady and transient flow conditions where a conservative tracer was injected in the system and its concentration measured with optical imaging methods. The experimental results were quantitatively interpreted with numerical simulations implementing a non-linear velocity-dependent dispersive transport model. We estimated plume dilution by computing the dilution index and its evolution as well as two key geometrical metrics of the transient plumes: the perimeter and the area. We further investigated reactive mixing and mixing enhancement considering mixing-controlled bimolecular reactions using different critical mixing ratios. In general, highly transient boundary conditions lead to a larger area, perimeter and plume dilution and the results show greater relative enhancement for the scenarios with low groundwater flow velocity. A linear relationship was observed between the evolution of the area and the dilution index of the plumes for the transient flow scenarios investigated. Considering reactive transport and mixing-limited reactions at the surface water-groundwater interface, we identified different dilution and reaction dominated regimes, characterized, respectively, by increasing and decreasing plume entropies at different mixing ratios of the reactants. Furthermore, reactive mixing was enhanced by transient flows leading to a faster degradation of contaminant plumes compared to corresponding steady flow conditions.


Subject(s)
Groundwater , Water Pollutants, Chemical , Water Pollutants, Chemical/analysis , Water , Porosity , Water Movements , Models, Theoretical
5.
J Contam Hydrol ; 251: 104102, 2022 12.
Article in English | MEDLINE | ID: mdl-36372631

ABSTRACT

The use of electrokinetics (EK) has great potential to deliver reactants in impervious porous media, thus overcoming some of the challenges in the remediation of contaminants trapped in low-permeability zones. In this work we experimentally investigate electrokinetic transport in heterogeneous porous media consisting of a sandy matrix with a target clay inclusion. We demonstrate the efficient EK-delivery of permanganate in the target clay zone (transport velocity 0.3-0.5 m day-1) and its reactivity with Methylene Blue, a positively charged contaminant trapped within the inclusion. The delivery method was optimized using a KH2PO4/K2HPO4 buffer to attenuate the effect of electrolysis reactions in the electrode chambers, thus mitigating the propagation of pH fronts and preventing the phenomenon of permanganate stalling. The experiments showed that the buffer electrical conductivity greatly impacts the potential gradient in the heterogeneous porous medium with implications on the observed rates of electrokinetic transport (variation up to 40%). The reactive experiments provided direct evidence of the permanganate penetration within the clay and of its capability to degrade the target immobilized contaminant. The experimental results were analyzed using a process-based model, elucidating the governing transport mechanisms and highlighting the effect of different mass transfer processes on conservative and reactive electrokinetic transport.


Subject(s)
Environmental Restoration and Remediation , Soil Pollutants , Clay , Manganese Compounds , Oxides
6.
Phys Rev E ; 105(3-2): 035105, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35428141

ABSTRACT

Transport processes in porous media are controlled by the characteristics of the flow field which are determined by the porous material properties and the boundary conditions of the system. This work provides experimental evidence of the relation between mixing and flow field topology in porous media at the continuum scale. The setup consists of a homogeneously packed quasi-two-dimensional flow-through chamber in which transient flow conditions, dynamically controlled by two external reservoirs, impact the transport of a dissolved tracer. The experiments were performed at two different flow velocities, corresponding to Péclet numbers of 191 and 565, respectively. The model-based interpretation of the experimental results shows that high values of the effective Okubo-Weiss parameter, driven by the changes of the boundary conditions, lead to high rates of increase of the Shannon entropy of the tracer distribution and, thus, to enhanced mixing. The comparison between a hydrodynamic dispersion model and an equivalent pore diffusion model demonstrates that despite the spatial and temporal variability in the hydrodynamic dispersion coefficients, the Shannon entropy remains almost unchanged because it is controlled by the Okubo-Weiss parameter. Overall, our work demonstrates that under highly transient boundary conditions, mixing dynamics in homogeneous porous media can also display complex patterns and is controlled by the flow topology.

7.
Environ Sci Technol ; 56(8): 5049-5061, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35377625

ABSTRACT

The dissolution of sulfide minerals can lead to hazardous arsenic levels in groundwater. This study investigates the oxidative dissolution of natural As-bearing sulfide minerals and the related release of arsenic under flow-through conditions. Column experiments were performed using reactive As-bearing sulfide minerals (arsenopyrite and löllingite) embedded in a sandy matrix and injecting oxic solutions into the initially anoxic porous media to trigger the mineral dissolution. Noninvasive oxygen measurements, analyses of ionic species at the outlet, and scanning electron microscopy allowed tracking the propagation of the oxidative dissolution fronts, the mineral dissolution progress, and the change in mineral surface composition. Process-based reactive transport simulations were performed to quantitatively interpret the geochemical processes. The experimental and modeling outcomes show that pore-water acidity exerts a key control on the dissolution of sulfide minerals and arsenic release since it determines the precipitation of secondary mineral phases causing the sequestration of arsenic and the passivation of the reactive mineral surfaces. The impact of surface passivation strongly depends on the flow velocity and on the spatial distribution of the reactive minerals. These results highlight the fundamental interplay of reactive mineral distribution and hydrochemical and hydrodynamic conditions on the mobilization of arsenic from sulfide minerals in flow-through systems.


Subject(s)
Arsenic , Groundwater , Water Pollutants, Chemical , Arsenic/analysis , Hydrodynamics , Minerals/chemistry , Oxidative Stress , Solubility , Sulfides/chemistry , Water Pollutants, Chemical/analysis
8.
Water Res ; 213: 118161, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35152137

ABSTRACT

Electrokinetic techniques represent a valuable approach to enhance solute transport, reactant delivery and contaminant degradation in complex environmental matrices, such as contaminated soil and groundwater, and have a great potential for the remediation of many organic and inorganic pollutants. This study investigates the complex interplay between the key electrokinetic transport mechanisms, electromigration and electroosmosis, in physically heterogeneous porous media and its impact on tracer distribution, reactant mixing and degradation efficiency. We perform experiments in a multidimensional setup, considering different types of heterogeneities, injected tracers and reactants, as well as background electrolyte pore water with different chemical composition and pH. We show that EK transport is significantly affected by the physical heterogeneities, due to the interaction between electrokinetic and hydraulic processes, and by the pore water chemistry that plays a key role on the magnitude and spatial distribution of electroosmotic fluxes. The latter affect the overall transport of charged and non-charged species, including the migration velocity of injected plumes, their spatial patterns, spreading and mixing with the background groundwater, and the extent of degradation and the spatio-temporal evolution of reactive zones in the heterogeneous porous media. Process-based numerical modeling allowed us to interpret the experimental observations and to disentangle the coupled effects of physical, chemical and electrostatic processes in the multidimensional, heterogeneous setups. Besides elucidating the mechanisms controlling electrokinetic transport, the results of this study have also important implications for practical field implementation of EK approaches in intrinsically heterogeneous subsurface systems.

9.
J Contam Hydrol ; 246: 103965, 2022 04.
Article in English | MEDLINE | ID: mdl-35168032

ABSTRACT

Although mixing and surface complexation reactions are key processes for solute transport in porous media, their coupling has not been extensively investigated. In this work, we study the impact of mass-transfer limitations on heterogeneous reactions taking place at the solid-solution interface of a natural sandy porous medium under advection-dominated flow-through conditions. A comprehensive set of 36 column experiments with different grain sizes (0.64, 1.3 and 2.3 mm), seepage velocities (1, 30 and 90 m/day), and hydrochemical conditions were performed. The injection of NaBr solutions of different concentrations (1-100 mM) led to the release of protons via deprotonation reactions of the quartz surface. pH and solute concentration breakthrough curves were measured at the outlet of the columns and the propagation of pH fronts in the column setups was tracked inside the porous medium with non-invasive optode sensors. The experimental results show that the deprotonation of the reactive surfaces, resulting from their interactions with the injected ionic species, strongly depends on the hydrodynamic conditions and differs among the tested porous media despite their apparent similar surface properties. Reactive transport modeling was used to quantitatively interpret the experimental results and to analyze the effects of mass-transfer limited physical processes on surface complexation reactions, propagation of pH fronts, transport of major ions and spatio-temporal evolution of surface composition. A dual domain mass transfer formulation (DDMT) combined with a surface complexation model (SCM) allowed capturing the effects of incomplete mixing on the surface reactions and to reproduce the experimental observations collected in the experiments with high flow velocities. The SCM was parameterized with a single set of surface complexation parameters, accounting for the similar surface properties of the porous media, and was capable of describing the surface complexation mechanisms and their impact on the hydrochemistry over the large range of tested ionic strengths.


Subject(s)
Models, Theoretical , Sand , Porosity , Quartz , Solutions
10.
J Contam Hydrol ; 244: 103933, 2022 01.
Article in English | MEDLINE | ID: mdl-34872016

ABSTRACT

The application of electrokinetic techniques in porous media has great potential to enhance mass transfer rates and, thus, to mobilize contaminants and effectively deliver reactants and amendments. However, the transport mechanisms induced by the application of an external electric field are complex and entail the coupling of physical, chemical and electrostatic processes. In this study we focus on electromigration and we provide experimental evidence of the impact of compound-specific properties, such as the aqueous diffusivity and the valence of charged species, on the macroscopic electrokinetic transport. We performed a series of multidimensional experiments considering the displacement of three different tracer plumes (i.e., permanganate, allura red and new coccine) in different background electrolyte solutions. The outcomes of the experiments clearly show that both the compound-specific diffusivity and the charge of the injected and resident ions impact the transport of the selected color tracer plumes, whose evolution was monitored with image analysis. The investigated experimental scenarios led to distinct plume behavior characterized by different mass distribution, average displacement velocities, longitudinal and lateral plume spreading, shape of the invading and receding fronts, as well as dilution of the injected solutes. A numerical simulator, based on the Nernst-Planck-Poisson equations and on aqueous speciation reactions in the pore water, allowed us to quantitatively interpret the experimental results, to capture the observed patterns of plume evolution, and to illuminate the coupling between the governing physico-chemical mechanisms and the controlling role of small scale compound-specific and electrostatic properties. Finally, the model was also extended to a typical configuration of in situ electrokinetic remediation of contaminated groundwater to show the impact of such mechanisms at larger scale.


Subject(s)
Groundwater , Porosity , Water , Water Movements
11.
Sci Adv ; 7(18)2021 Apr.
Article in English | MEDLINE | ID: mdl-33931456

ABSTRACT

Metals are currently almost exclusively extracted from their ore via physical excavation. This energy-intensive process dictates that metal mining remains among the foremost CO2 emitters and mine waste is the single largest waste form by mass. We propose a new approach, electrokinetic in situ leaching (EK-ISL), and demonstrate its applicability for a Cu-bearing sulfidic porphyry ore. In laboratory-scale experiments, Cu recovery was rapid (up to 57 weight % after 94 days) despite low ore hydraulic conductivity (permeability = 6.1 mD; porosity = 10.6%). Multiphysics numerical model simulations confirm the feasibility of EK-ISL at the field scale. This new approach to mining is therefore poised to spearhead a new paradigm of metal recovery from currently inaccessible ore bodies with a markedly reduced environmental footprint.

12.
J Hazard Mater ; 409: 124651, 2021 05 05.
Article in English | MEDLINE | ID: mdl-33450514

ABSTRACT

The oxidative dissolution of sulfide minerals, naturally present in the subsurface, is one of the major pathways of arsenic mobilization. This study investigates the release and fate of arsenic from arsenopyrite and löllingite oxidation under dynamic redox conditions. We performed multidimensional flow-through experiments focusing on the impact of chemical heterogeneity on arsenic mobilization and reactive transport. In the experimental setups the As-bearing sulfide minerals were embedded, with different concentrations and spatial distributions, into a sandy matrix under anoxic conditions. Oxic water flushed in the flow-through setups triggered the oxidative dissolution of the reactive minerals, the release of arsenic, as well as changes in pore water chemistry, surface-solution interactions and mineral precipitation. We developed a reactive transport model to quantitatively interpret the experimental results. The simulation outcomes showed that 40% of the arsenic released was reincorporated into a freshly precipitated iron-arsenate phase that created a coating on the mineral surface limiting the dissolution reactions. The faster dissolution rate of löllingite compared to arsenopyrite was responsible for sustaining the continuous release of As-contaminated plumes. The model also allowed shedding light on the spatial distribution, on the temporal dynamics, and on the interactions between arsenic sources (As-bearing minerals) and sinks (freshly formed secondary phases) in flow-through systems.

13.
J Contam Hydrol ; 237: 103754, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33517148

ABSTRACT

Low-permeability aquitards can significantly affect the transport, distribution, and persistence of contaminant plumes in subsurface systems. Although such low-permeability materials are often charged, the key role of charge-induced electrostatic processes during contaminant transport has not been extensively studied. This work presents a detailed investigation exploring the coupled effects of heterogeneous distribution of physical, chemical and electrostatic properties on reactive contaminant transport in field-scale groundwater systems including spatially distributed clay zones. We performed an extensive series of numerical experiments in three distinct heterogeneous sandy-clayey domains with different levels of complexity. The flow and reactive transport simulations were performed by explicitly resolving the complex velocity fields, the small-scale electrostatic processes, the compound-specific diffusive/dispersive fluxes and the chemical processes utilizing a multi-continua based reactive transport code (MMIT-Clay). In each particular domain, numerical experiments were performed focusing on both the forward and back diffusion through the sandy-clayey interfaces. The results illuminate the control of microscopic electrostatic mechanisms on macroscopic mass transfer. Coulombic interactions in the clay's diffuse layer can significantly accelerate or retard a particular species depending on its charge. Furthermore, the chemical heterogeneity plays a major role in mass storage and release during reactive transport. Neglecting such processes can lead to substantial over- or underestimation of the overall transport behavior, which underlines the need for integrated physical, chemical and electrostatic approaches to accurately describe mass transfer processes in systems including low-permeability inclusions.


Subject(s)
Groundwater , Water Pollutants, Chemical , Clay , Diffusion , Sand , Water Pollutants, Chemical/analysis
14.
Chemosphere ; 264(Pt 2): 128529, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33038736

ABSTRACT

Bromochlorinated compounds are organic contaminants originating from different natural and anthropic sources and increasingly found in different environmental compartments. This work presents an online approach for compound specific stable isotope analysis of chlorine and bromine isotope ratios for bromochlorinated trihalomethanes using gas chromatography coupled to quadrupole mass spectrometry (GC-qMS). An evaluation scheme was developed to simultaneously determine stable chlorine and bromine isotope ratios based on the mass spectral data of two target compounds: dibromochloromethane and dichlorobromomethane. The analytical technique was optimized by assessing the impact of different instrumental parameters, including dwell time, split ratios, and ionization energy. Successively, static headspace samples containing the two target compounds at aqueous concentrations ranging from 0.1 mg/L to 5 mg/L were analyzed in order to test the precision and reproducibility of the proposed approach. The results showed a good precision under the optimized instrumental conditions, with relative standard deviations ranging between 0.05% and 0.5% for chlorine and bromine isotope analysis. Finally, the method was tested in a source identification problem in which the simultaneous determination of chlorine and bromine stable isotope ratios allowed the clear distinction of dibromochloromethane from three different manufacturers.


Subject(s)
Bromine , Chlorine , Isotopes , Reproducibility of Results , Trihalomethanes
15.
Environ Sci Technol ; 55(1): 719-729, 2021 01 05.
Article in English | MEDLINE | ID: mdl-33295762

ABSTRACT

Electrokinetics in porous media entails complex transport processes occurring upon the establishment of electric potential gradients, with a wide spectrum of environmental applications ranging from remediation of contaminated sites to biotechnology. The resulting electric forces cause the movement of pore water ions in opposite directions, leading to charge interactions that can affect the distribution of charged species in the domain. Here, we demonstrate that changes in chemical conditions, such as the concentration of a background electrolyte in the pore water of a saturated porous medium, exert a key control on the macroscopic transport of charged tracers and reactants. The difference in concentration between the background electrolyte and an injected solute can limit or enhance the reactant delivery, cause nonintuitive patterns of concentration distribution, and ultimately control mixing and degradation kinetics. With nonreactive and reactive electrokinetic transport experiments combined with process-based modeling, we show that microscopic charge interactions in the pore water play a crucial role on the transport of injected plumes and on the mechanisms and rate of both physical and chemical processes at larger, macroscopic scales. Our results have important implications on electrokinetic transport in porous media and may greatly impact injection and delivery strategies in a wide range of applications, including in situ remediation of soil and groundwater.


Subject(s)
Environmental Restoration and Remediation , Groundwater , Soil Pollutants , Porosity , Soil , Soil Pollutants/analysis , Water
16.
Phys Rev E ; 102(1-1): 013110, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32795043

ABSTRACT

Heterogeneity and macroscopic anisotropy of porous media play an important role for dilution and reaction enhancement of conservative and reactive plumes. In this study, we perform numerical simulations to investigate steady-state flow and transport in three-dimensional heterogeneous porous media. We consider two macroscopic anisotropic inclusions resulting in helical flows with twisting streamlines in a three-dimensional flow-through domain. The inclusions are obtained by alternating two layers of angled slices of coarse and fine porous media with different hydraulic conductivity. We investigate flow and transport scenarios considering different geometry and relative position of the two anisotropic inclusions yielding helical flow fields with different extent of interaction. We use metrics of stretching and folding to characterize the flow field and entropy-based metrics for the analysis of the conservative and reactive transport problems. The outcomes show that the two helices result in different patterns of twisting streamlines, which cause distinct deformation of the plumes. However, mixing and reaction enhancement could not be directly related to the extent of the flow field deformation: Configurations with strong deformation can result in only moderate mixing enhancement, whereas configurations with limited deformation of the flow field can lead to significant mixing of the solute plume. Finally, we explore the impact of different degradation rates on reactive transport and the role of reaction kinetics on the entropy balance for a reactant undergoing transport and mixing-controlled degradation in the twisting flow fields. The results show that strong mixing enhancement due to helical flow increases the importance of the reaction kinetics that becomes the rate-limiting process for solute reactive transport.

17.
Waste Manag ; 108: 160-171, 2020 May 01.
Article in English | MEDLINE | ID: mdl-32353781

ABSTRACT

Landfill biocovers are an efficient strategy for the mitigation of greenhouse gas emissions from landfills. A complex interplay between key physical and reactive processes occurs in biocovers and affects the transport of gas components. Therefore, numerical models can greatly help the understanding of these systems, their design and optimal operation. In this study, we developed a 3-D multicomponent modeling approach to quantitatively interpret experimental datasets measured in the laboratory and in pilot-scale landfill biocovers. The proposed model is able to reproduce the observed spatial and temporal dynamics of CH4, O2 and CO2 migration in biocovers under different operating conditions and demonstrates the importance of dimensionality in understanding the propagation of gas flow and migration of gas components in such porous media. The model allowed us to capture the coupled transport behavior of gas components, to evaluate the exchange of gas fluxes at the interface between the biocover surface and free air flow, and to investigate the effects of different gas injection patterns on the distribution of gas components within biocovers. The model also helps elucidating the dynamics and competition between methane oxidation and respiration processes observed in the different experimental setups. The simulation outcomes reveal that increasing availability of methane (i.e., higher injection flow rates or higher fractions of CH4 in the injected gas composition) results in progressive dominance of methane oxidation in the biocovers and moderates the impact of respiration.


Subject(s)
Air Pollutants , Refuse Disposal , Methane , Oxidation-Reduction , Waste Disposal Facilities
18.
J Hazard Mater ; 397: 122787, 2020 Oct 05.
Article in English | MEDLINE | ID: mdl-32388097

ABSTRACT

This study presents a process-based modeling analysis of electrokinetic-enhanced bioremediation (EK-Bio) to illuminate the complex interactions between physical, electrostatic and biogeochemical processes occurring during the application of this remediation technique. The features of the proposed model include: (i) multidimensional electrokinetic transport in saturated porous media by electromigration and electroosmosis, (ii) charge interactions, (iii) degradation kinetics, (iv) microbial populations dynamics of indigenous and specialized exogenous degraders, (v) mass transfer limitations, and (vi) geochemical reactions. A scenario modeling investigation is presented, which was inspired by an EK-Bio pilot application conducted in a clayey aquitard at the Skuldelev site (Denmark) contaminated by chlorinated ethenes. Lactate and specialized degraders are delivered under conservative and reactive transport conditions. In the considered setup, transport of lactate using electrokinetics results in more than fourfold increase in the distribution efficiency with respect to a diffusion-only scenario. Moreover, EK transport by electromigration and electroosmosis yields fluxes at least two orders of magnitude larger than diffusive fluxes. Quantitative metrics are also defined and used to assess the amendment distribution and the enhanced contaminant biodegradation in the different conservative and reactive transport scenarios.


Subject(s)
Environmental Restoration and Remediation , Biodegradation, Environmental , Clay , Ethylenes
19.
Environ Sci Process Impacts ; 22(3): 740-750, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-32003373

ABSTRACT

Process understanding of microbial communities containing organohalide-respiring bacteria (OHRB) is important for effective bioremediation of chlorinated ethenes. The impact of iron and sulfate reduction on cis-1,2-dichloroethene (cDCE) and vinyl chloride (VC) dechlorination by a consortium containing the OHRB Dehalococcoides spp. was investigated using multiphase batch experiments. The OHRB consortium was found to contain endogenous iron- and sulfate-reducing bacteria (FeRB and SRB). A biogeochemical model was developed and used to quantify the mass transfer, aquatic geochemical, and microbial processes that occurred in the multiphase batch system. It was determined that the added SRB had the most significant impact on contaminant degradation. Addition of the SRB increased maximum specific substrate utilization rates, kmax, of cDCE and VC by 129% and 294%, respectively. The added FeRB had a slight stimulating effect on VC dechlorination when exogenous SRB were absent, but when cultured with the added SRB, FeRB moderated the SRB's stimulating effect. This study demonstrates that subsurface microbial community interactions are more complex than categorical, guild-based competition for resources such as electron donor.


Subject(s)
Dichloroethylenes/chemistry , Vinyl Chloride , Bacteria , Biodegradation, Environmental , Iron , Sulfates
20.
J Contam Hydrol ; 229: 103567, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31780056

ABSTRACT

The potential of electrokinetic remediation technologies (EKR) for the removal of different contaminants from subsurface porous media has been increasingly recognized. Despite electrokinetic applications have shown promising results, quantitative understanding of such systems is still challenging due to the complex interplay between physical transport processes, electrostatic interactions, and geochemical reactions. In this study, we perform a model-based analysis of electrokinetic transport in saturated porous media. We investigate the effects of: (i) Coulombic interactions between ions in the system mobilized by electromigration, (ii) reaction kinetics on the overall removal efficiency of a non-charged organic contaminant, and (iii) dimensionality and different electrode configurations. The results show that such effects play a major role on the performance of electrokinetic systems. The simulations illuminate the importance of microscopic processes, such as electrostatic interactions and ion-specific diffusivities, and their non-intuitive macroscopic impact on the delivery of charged amendments and on the efficiency of contaminant removal. The insights of this study are valuable to improve and optimize the design and the operational strategies of electrokinetic remediation systems.


Subject(s)
Environmental Restoration and Remediation , Soil Pollutants , Kinetics , Porosity
SELECTION OF CITATIONS
SEARCH DETAIL
...