Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 13(2): e0192148, 2018.
Article in English | MEDLINE | ID: mdl-29389977

ABSTRACT

Oxidative DNA damage and base excision repair (BER) play important roles in modulating trinucleotide repeat (TNR) instability that is associated with human neurodegenerative diseases and cancer. We have reported that BER of base lesions can lead to TNR instability. However, it is unknown if modifications of the sugar in an abasic lesion modulate TNR instability. In this study, we characterized the effects of the oxidized sugar, 5'-(2-phosphoryl-1,4-dioxobutane)(DOB) in CAG repeat tracts on the activities of key BER enzymes, as well as on repeat instability. We found that DOB crosslinked with DNA polymerase ß and inhibited its synthesis activity in CAG repeat tracts. Surprisingly, we found that DOB also formed crosslinks with DNA ligase I and inhibited its ligation activity, thereby reducing the efficiency of BER. This subsequently resulted in the accumulation of DNA strand breaks in a CAG repeat tract. Our study provides important new insights into the adverse effects of an oxidized abasic lesion on BER and suggests a potential alternate repair pathway through which an oxidized abasic lesion may modulate TNR instability.


Subject(s)
DNA Damage , DNA Repair , Trinucleotide Repeats/genetics , DNA Polymerase beta/antagonists & inhibitors , DNA Polymerase beta/biosynthesis , Oxidation-Reduction
2.
DNA Repair (Amst) ; 48: 17-29, 2016 12.
Article in English | MEDLINE | ID: mdl-27793507

ABSTRACT

DNA base lesions and base excision repair (BER) within trinucleotide repeat (TNR) tracts modulate repeat instability through the coordination among the key BER enzymes DNA polymerase ß, flap endonuclease 1 (FEN1) and DNA ligase I (LIG I). However, it remains unknown whether BER cofactors can also alter TNR stability. In this study, we discovered that proliferating cell nuclear antigen (PCNA), a cofactor of BER, promoted CAG repeat deletion and removal of a CAG repeat hairpin during BER in a duplex CAG repeat tract and CAG hairpin loop, respectively. We showed that PCNA stimulated LIG I activity on a nick across a small template loop during BER in a duplex (CAG)20 repeat tract promoting small repeat deletions. Surprisingly, we found that during BER in a hairpin loop, PCNA promoted reannealing of the upstream flap of a double-flap intermediate, thereby facilitating the formation of a downstream flap and stimulating FEN1 cleavage activity and hairpin removal. Our results indicate that PCNA plays a critical role in preventing CAG repeat expansions by modulating the structures of dynamic DNA via cooperation with BER enzymes. We provide the first evidence that PCNA prevents CAG repeat expansions during BER by promoting CAG repeat deletion and removal of a TNR hairpin.


Subject(s)
Base Sequence , DNA Ligase ATP/genetics , DNA Polymerase beta/genetics , Flap Endonucleases/genetics , Proliferating Cell Nuclear Antigen/genetics , Sequence Deletion , Trinucleotide Repeat Expansion , DNA Damage , DNA Ligase ATP/metabolism , DNA Polymerase beta/metabolism , DNA Repair , DNA-(Apurinic or Apyrimidinic Site) Lyase/genetics , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , Flap Endonucleases/metabolism , Gene Expression , Humans , Nucleic Acid Conformation , Proliferating Cell Nuclear Antigen/metabolism , Trinucleotide Repeats
SELECTION OF CITATIONS
SEARCH DETAIL
...