Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Article in English | MEDLINE | ID: mdl-33397813

ABSTRACT

Despite the omnipresence of colloidal suspensions, little is known about the influence of colloid shape on phase transformations, especially in nonequilibrium. To date, real-space imaging results at high concentrations have been limited to systems composed of spherical colloids. In most natural and technical systems, however, particles are nonspherical, and their structural dynamics are determined by translational and rotational degrees of freedom. Using confocal microscopy of fluorescently labeled core-shell particles, we reveal that suspensions of ellipsoidal colloids form an unexpected state of matter, a liquid glass in which rotations are frozen while translations remain fluid. Image analysis unveils hitherto unknown nematic precursors as characteristic structural elements of this state. The mutual obstruction of these ramified clusters prevents liquid crystalline order. Our results give insight into the interplay between local structures and phase transformations. This helps to guide applications such as self-assembly of colloidal superstructures and also gives evidence of the importance of shape on the glass transition in general.

2.
Langmuir ; 36(43): 13087-13095, 2020 Nov 03.
Article in English | MEDLINE | ID: mdl-33085481

ABSTRACT

Although single-particle level studies on prolate ellipsoidal colloids are relatively abundant, similar studies on oblate ellipsoids are rare because suitable model systems are scarcely available. Here, we present the preparation of monodisperse hard core-shell oblate ellipsoids that can be imaged and tracked in 3D with confocal laser scanning microscopy. Using a thermomechanical squeezing method, we transform spherical core-shell polymethyl-methacrylate (PMMA) particles into oblate ellipsoids. We show how the shape polydispersity as well as the aspect ratio of the obtained oblate ellipsoids can be controlled. In addition, we discuss how the core-shell geometry limits the range of aspect ratios because of the different viscoelastic properties of the cross-linked PMMA core and linear PMMA shell. We further demonstrate imaging of the core-shell oblate dispersions on a single-particle level in real space and time and the tracking of position and orientation using our recently developed tracking algorithm for anisotropic core-shell colloids. Our results thus provide the tools for the future investigation of the behavior of oblate ellipsoids, especially in dense suspensions.

3.
Soft Matter ; 16(4): 1021-1028, 2020 Jan 28.
Article in English | MEDLINE | ID: mdl-31854439

ABSTRACT

Suspensions of hard ellipsoidal particles exhibit complex phase behavior as shown by theoretical predictions and simulations of phase diagrams. Here, we report quantitative confocal microscopy experiments of hard prolate colloidal ellipsoids with different aspect ratio a/b. We studied different volume fractions φ of ellipsoids in density and refractive index matched suspensions. Large 3D sample volumes were investigated and the positions as well as the orientations of all ellipsoids were extracted by image analysis routines. By evaluating the translational and orientational order in the system we determined the presence of isotropic and nematic phases. For ellipsoids with a/b = 2.0 we found that isotropic phases form at all φ, while ellipsoids with a/b = 7.0 formed nematic phases at high φ, as expected from theory and simulations. For a/b = 3.5 and a/b = 4.1, however, we observed the absence of long-range orientational order even at φ where nematic phases are expected. We show that local orientational order formed with the emergence of nematic precursors for a/b = 3.5 and short-ranged nematic domains for a/b = 4.1. Our results provide novel insight into the phase behavior and orientational order of ellipsoids with different aspect ratios.

4.
Soft Matter ; 13(44): 8240-8249, 2017 Nov 15.
Article in English | MEDLINE | ID: mdl-29063943

ABSTRACT

Using real-space imaging of single particles, we investigate the interplay between translational and rotational motion of tracer particles in suspensions of colloidal particles over a wide range of volume fractions from dilute fluid to densely packed crystal. To this end, we introduce a new type of spherical colloidal tracer particles containing two differently labelled fluorescent cores. The tracer particles can be combined with host particles enclosing a single fluorescent core and chemical and physical properties identical to the tracers. This leads to a system of spherical colloidal particles, in which spatio-temporal trajectories of rotation and translation of individual particles can be recorded simultaneously with full 360° resolution of rotational dynamics. Our analysis shows that translation and rotation of colloidal particles are uncorrelated and decoupled for all volume fractions irrespective of the phase of the particle system.

SELECTION OF CITATIONS
SEARCH DETAIL
...