Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Int J Food Microbiol ; 354: 109206, 2021 Sep 16.
Article in English | MEDLINE | ID: mdl-34088559

ABSTRACT

Managed inoculation of non-Saccharomyces yeast species is regarded as a practical way to introduce new characteristics to wine. However, these yeasts struggle to survive until fermentation is complete. Kluyveromyces marxianus IWBT Y885 is one such yeast. Although it displays interesting oenological properties, a longer persistence during alcoholic fermentation would warranty a stronger impact on wine composition. A key factor for survival, growth and sustained metabolic activity of all yeasts is their nutrient requirements. Thus, identifying nutrients that are essential for maximising fermentation performance, and subsequently ensuring adequate levels of nutrients, is a means to ensure significant contribution of yeasts to wine properties. This study aimed to identify essential nutrients, other than previously studied sugars and nitrogen, for maximum impact of K. marxianus Y885, as well as to characterise the outcomes of their utilisation. A multifactorial experimental design was employed to investigate the impact of nutrient concentrations on fermentation performance with K. marxianus Y885 in synthetic must. B-complex vitamins most significantly impacted fermentation performance of K. marxianus Y885 compared to other nutrient groups investigated. Considering the well-established role of the vitamin, thiamine, for maximum fermentation performance during winemaking and the fact that it may be supplemented to wine fermentations legally, the responses to specifically exogenous thiamine concentration for K. marxianus Y885 and Saccharomyces cerevisiae EC1118 were compared in terms of population viability, fermentation rate, total sugars utilised, thiamine assimilation kinetics, and final wine composition. A saturation effect for initial thiamine concentration of K. marxianus Y885 fermentations was characterised, with a maximum fermentation rate and over 90% of available sugars utilisation obtained at 0.25 mg/L. An appreciably larger comparative increase in exponential cell growth rate, maximum population, fermentation rate and total CO2 production for K. marxianus Y885 compared to S. cerevisiae EC1118 revealed a greater necessity for thiamine to ensure maximum fermentation performance. A delayed uptake of thiamine at higher concentrations for K. marxianus Y885 suggested differential regulation of thiamine uptake compared to S. cerevisiae EC1118. In addition, different trends in metabolites produced between species suggest that thiamine concentration impacts the carbon metabolic flux differently in these two yeasts, potentially impacting final wine properties.


Subject(s)
Food Microbiology , Kluyveromyces , Saccharomyces cerevisiae , Thiamine , Wine , Fermentation , Kluyveromyces/metabolism , Saccharomyces cerevisiae/metabolism , Thiamine/metabolism , Wine/analysis , Wine/microbiology
2.
Food Microbiol ; 94: 103650, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33279075

ABSTRACT

The positive impact of certain non-Saccharomyces yeasts on the aromatic profile of wines has been well documented in literature and their industrial use in association with S. cerevisiae is now recommended. Competition between non-Saccharomyces species and Saccharomyces cerevisiae for various nutrients, especially nitrogen sources, greatly impacts the production of aroma compounds. In this study, we further explored the impact of different nitrogen nutrition strategies on the production of carbon and sulphur volatile compounds of three non-Saccharomyces strains, namely Pichia burtonii, Kluyveromyces marxianus, Zygoascus meyerae sequentially inoculated with S. cerevisiae in Sauvignon blanc and Shiraz grape musts. Nitrogen additions were implemented according the specific requirement of each species. At the end of fermentation, we observed specific metabolic signatures for each strain in response to the nature of the nitrogen source suggesting strain-specific metabolic fluxes present. Overall, these results confirmed and further explored the interconnection between nitrogen sources and aroma metabolism (including that of higher alcohols, fatty acids, esters and volatile sulphur compounds), and their variations according to species and the nature of the nitrogen source. The knowledge generated provides new insights to modulate the aroma profile of wines produced with non-Saccharomyces species.


Subject(s)
Kluyveromyces/metabolism , Nitrogen/metabolism , Odorants/analysis , Saccharomycetales/metabolism , Volatile Organic Compounds/metabolism , Wine/microbiology , Alcohols/metabolism , Fermentation , Phylogeny , Saccharomyces cerevisiae/metabolism , Vitis/metabolism , Vitis/microbiology , Volatile Organic Compounds/analysis , Wine/analysis
3.
Environ Microbiol ; 21(11): 4076-4091, 2019 11.
Article in English | MEDLINE | ID: mdl-31336027

ABSTRACT

In grape must, nitrogen is available as a complex mixture of various compounds (ammonium and amino acids). Wine yeasts assimilate these multiple sources in order to suitably fulfil their anabolic requirements during alcoholic fermentation. Nevertheless, the order of uptake and the intracellular fate of these sources are likely to differ between strains and species. Using a two-pronged strategy of isotopic filiation and RNA sequencing, the metabolic network of nitrogen utilization and its regulation in Kluyveromyces marxianus were described, in comparison with those of Saccharomyces cerevisiae. The data highlighted differences in the assimilation of ammonium and arginine between the two species. The data also revealed that the metabolic fate of certain nitrogen sources differed, thereby resulting in the production of various amounts of key wine aroma compounds. These observations were corroborated by the gene expression analysis.


Subject(s)
Ammonium Compounds/metabolism , Kluyveromyces/metabolism , Nitrogen/metabolism , Saccharomyces cerevisiae/metabolism , Amino Acids/metabolism , Fermentation , Gene Expression Profiling , Kluyveromyces/genetics , Metabolic Networks and Pathways/physiology , Saccharomyces cerevisiae/genetics , Vitis/microbiology , Wine/microbiology
4.
J Agric Food Chem ; 66(44): 11739-11747, 2018 Nov 07.
Article in English | MEDLINE | ID: mdl-30350960

ABSTRACT

Since Saccharomyces cerevisiae strains display no to weak pectinase activity, the utilization of external pectinase is a common practice in winemaking to enhance the extraction of compounds located in the grape berry skins during maceration. In this study, the activity of the native endopolygalacturonase of a Kluyveromyces marxianus strain, isolated from grape juice, was characterized in Shiraz grape must during alcoholic fermentation with or without prefermentative cold maceration. The wines made with K. marxianus had a higher methanol concentration, more free-run wine, an altered volatile compound profile, and displayed pectinase activity in cell-free wine samples. Moreover, the results strongly suggest that K. marxianus' pectinase released polygalacturonic acid soluble fragments, unlike fungal pectinases, which mostly release monomers. Overall, this study shows that K. marxianus is an effective pectinase producer in wine with potential benefits for wine properties.


Subject(s)
Flavoring Agents/chemistry , Fungal Proteins/metabolism , Kluyveromyces/enzymology , Polygalacturonase/metabolism , Wine/analysis , Fermentation , Flavoring Agents/metabolism , Fungal Proteins/genetics , Kluyveromyces/genetics , Methanol/analysis , Methanol/metabolism , Odorants/analysis , Polygalacturonase/genetics , Vitis/metabolism , Vitis/microbiology , Wine/microbiology
5.
Food Microbiol ; 76: 29-39, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30166153

ABSTRACT

During alcoholic fermentation, many parameters, including the nitrogen composition of the must, can affect aroma production. The aim of this study was to examine the impact of several types of nitrogen sources added at different times during fermentation. Nitrogen was added as ammonium or a mixture of amino acids at the beginning of fermentation or at the start of the stationary phase. These conditions were tested with two Saccharomyces cerevisiae strains that have different nitrogen requirements. The additions systematically reduced the fermentation duration. The aroma production was impacted by both the timing of the addition and the composition of the nitrogen source. Propanol appeared to be a metabolic marker of the presence of assimilable nitrogen in the must. The production of ethyl esters was slightly higher after the addition of any type of nitrogen; the production of higher alcohols other than propanol was unchanged, and acetate esters were overproduced due to the overexpression of the genes ATF1 and ATF2. Finally the parameter affecting the most the synthesis of beneficial aromas was the addition timing: The supply of organic nitrogen at the beginning of the stationary phase was more favorable for the synthesis of beneficial aromas.


Subject(s)
Nitrogen/pharmacology , Odorants/analysis , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/metabolism , Wine/microbiology , Acetyltransferases/drug effects , Acetyltransferases/genetics , Alcohols/metabolism , Amino Acids/metabolism , Amino Acids/pharmacology , Ammonium Compounds/metabolism , Ammonium Compounds/pharmacology , Culture Media/chemical synthesis , Esters/metabolism , Fermentation , Kinetics , Nitrogen/metabolism , Proteins/drug effects , Proteins/genetics , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae Proteins/drug effects , Saccharomyces cerevisiae Proteins/genetics , Volatile Organic Compounds/analysis , Volatile Organic Compounds/metabolism , Wine/analysis
6.
FEMS Yeast Res ; 18(5)2018 08 01.
Article in English | MEDLINE | ID: mdl-29741618

ABSTRACT

Saccharomyces cerevisiae is currently the most important yeast involved in food fermentations, particularly in oenology. However, several other yeast species occur naturally in grape must that are highly promising for diversifying and improving the aromatic profile of wines. If the nitrogen requirement of S. cerevisiae has been described in detail, those of non-Saccharomyces yeasts remain poorly studied despite their increasingly widespread use in winemaking. With a view to improving the use of non-Saccharomyces yeasts in winemaking, we explored the fermentation performances, the utilisation of nitrogen sources and the volatile compound production of 10 strains of non-conventional yeasts in pure culture. Two different conditions were tested: one mimicking the grape juice's nitrogen composition and one with all the nitrogen sources at the same level. We highlighted the diversity in terms of nitrogen preference and amount consumed among the yeast strains. Some nitrogen sources (arginine, glutamate, glycine, tryptophan and γ-aminobutyric acid) displayed the largest variations between strains throughout the fermentation. Several non-Saccharomyces strains produced important aroma compounds such as higher alcohols, acetate and ethyl esters in significantly higher quantities than S. cerevisiae.


Subject(s)
Fermentation , Nitrogen/metabolism , Odorants/analysis , Wine/microbiology , Yeasts/metabolism , Acetates/analysis , Alcohols/analysis , Esters/analysis , Saccharomyces cerevisiae
7.
Front Microbiol ; 9: 196, 2018.
Article in English | MEDLINE | ID: mdl-29487584

ABSTRACT

The sequential inoculation of non-Saccharomyces yeasts and Saccharomyces cerevisiae in grape juice is becoming an increasingly popular practice to diversify wine styles and/or to obtain more complex wines with a peculiar microbial footprint. One of the main interactions is competition for nutrients, especially nitrogen sources, that directly impacts not only fermentation performance but also the production of aroma compounds. In order to better understand the interactions taking place between non-Saccharomyces yeasts and S. cerevisiae during alcoholic fermentation, sequential inoculations of three yeast species (Pichia burtonii, Kluyveromyces marxianus, Zygoascus meyerae) with S. cerevisiae were performed individually in a synthetic medium. Different species-dependent interactions were evidenced. Indeed, the three sequential inoculations resulted in three different behaviors in terms of growth. P. burtonii and Z. meyerae declined after the inoculation of S. cerevisiae which promptly outcompeted the other two species. However, while the presence of P. burtonii did not impact the fermentation kinetics of S. cerevisiae, that of Z. meyerae rendered the overall kinetics very slow and with no clear exponential phase. K. marxianus and S. cerevisiae both declined and became undetectable before fermentation completion. The results also demonstrated that yeasts differed in their preference for nitrogen sources. Unlike Z. meyerae and P. burtonii, K. marxianus appeared to be a competitor for S. cerevisiae (as evidenced by the uptake of ammonium and amino acids), thereby explaining the resulting stuck fermentation. Nevertheless, the results suggested that competition for other nutrients (probably vitamins) occurred during the sequential inoculation of Z. meyerae with S. cerevisiae. The metabolic footprint of the non-Saccharomyces yeasts determined after 48 h of fermentation remained until the end of fermentation and combined with that of S. cerevisiae. For instance, fermentations performed with K. marxianus were characterized by the formation of phenylethanol and phenylethyl acetate, while those performed with P. burtonii or Z. meyerae displayed higher production of isoamyl alcohol and ethyl esters. When considering sequential inoculation of yeasts, the nutritional requirements of the yeasts used should be carefully considered and adjusted accordingly. Finally, our chemical data suggests that the organoleptic properties of the wine are altered in a species specific manner.

8.
J Vis Exp ; (131)2018 01 22.
Article in English | MEDLINE | ID: mdl-29443074

ABSTRACT

Studies in the field of microbiology rely on the implementation of a wide range of methodologies. In particular, the development of appropriate methods substantially contributes to providing extensive knowledge of the metabolism of microorganisms growing in chemically defined media containing unique nitrogen and carbon sources. In contrast, the management through metabolism of multiple nutrient sources, despite their broad presence in natural or industrial environments, remains virtually unexplored. This situation is mainly due to the lack of suitable methodologies, which hinders investigations. We report an experimental strategy to quantitatively and comprehensively explore how metabolism operates when a nutrient is provided as a mixture of different molecules, i.e., a complex resource. Here, we describe its application for assessing the partitioning of multiple nitrogen sources through the yeast metabolic network. The workflow combines information obtained during stable isotope tracer experiments using selected 13C- or 15N-labeled substrates. It first consists of parallel and reproducible fermentations in the same medium, which includes a mixture of N-containing molecules; however,a selected nitrogen source is labeled each time. A combination of analytical procedures (HPLC, GC-MS) is implemented to assess the labeling patterns of targeted compounds and to quantify the consumption and recovery of substrates in other metabolites. An integrated analysis of the complete dataset provides an overview of the fate of consumed substrates within cells. This approach requires an accurate protocol for the collection of samples-facilitated by a robot-assisted system for online monitoring of fermentations-and the achievement of numerous time-consuming analyses. Despite these constraints, it allowed understanding, for the first time, the partitioning of multiple nitrogen sources throughout the yeast metabolic network. We elucidated the redistribution of nitrogen from more abundant sources toward other N-compounds and determined the metabolic origins of volatile molecules and proteinogenic amino acids.


Subject(s)
Carbon Isotopes/metabolism , Gas Chromatography-Mass Spectrometry/methods , Isotope Labeling/methods , Carbon Isotopes/analysis , Workflow
9.
Microb Biotechnol ; 10(6): 1649-1662, 2017 11.
Article in English | MEDLINE | ID: mdl-28695583

ABSTRACT

Nitrogen and lipids are key nutrients of grape must that influence the production of fermentative aromas by wine yeast, and we have previously shown that a strong interaction exists between these two nutrients. However, more than 90% of the acids and higher alcohols (and their acetate ester derivatives) were derived from intermediates produced by the carbon central metabolism (CCM). The objective of this study was to determine how variations in nitrogen and lipid resources can modulate the contribution of nitrogen and carbon metabolisms for the production of fermentative aromas. A quantitative analysis of metabolism using 13 C-labelled leucine and valine showed that nitrogen availability affected the part of the catabolism of N-containing compounds, the formation of α-ketoacids from CCM and the redistribution of fluxes around these precursors, explaining the optimum production of higher alcohols occurring at an intermediate nitrogen content. Moreover, nitrogen content modulated the total production of acids and higher alcohols differently, through variations in the redox state of cells. We also demonstrated that the phytosterol content, modifying the intracellular availability of acetyl-CoA, can influence the flux distribution, especially the formation of higher alcohols and the conversion of α-ketoisovalerate to α-ketoisocaproate.


Subject(s)
Carbon Isotopes/chemistry , Flavoring Agents/metabolism , Saccharomyces cerevisiae/metabolism , Wine/analysis , Carbon Isotopes/metabolism , Fermentation , Flavoring Agents/analysis , Isotope Labeling , Leucine/chemistry , Leucine/metabolism , Saccharomyces cerevisiae/chemistry , Valine/chemistry , Valine/metabolism , Vitis/metabolism , Vitis/microbiology , Wine/microbiology
10.
Microb Cell Fact ; 15: 32, 2016 Feb 09.
Article in English | MEDLINE | ID: mdl-26861624

ABSTRACT

BACKGROUND: Fermentative aromas play a key role in the organoleptic profile of young wines. Their production depends both on yeast strain and fermentation conditions. A present-day trend in the wine industry consists in developing new strains with aromatic properties using adaptive evolution approaches. An evolved strain, Affinity™ ECA5, overproducing esters, was recently obtained. In this study, dynamics of nitrogen consumption and of the fermentative aroma synthesis of the evolved and its ancestral strains were compared and coupled with a transcriptomic analysis approach to better understand the metabolic reshaping of Affinity™ ECA5. RESULTS: Nitrogen assimilation was different between the two strains, particularly amino acids transported by carriers regulated by nitrogen catabolite repression. We also observed differences in the kinetics of fermentative aroma production, especially in the bioconversion of higher alcohols into acetate esters. Finally, transcriptomic data showed that the enhanced bioconversion into acetate esters by the evolved strain was associated with the repression of genes involved in sterol biosynthesis rather than an enhanced expression of ATF1 and ATF2 (genes coding for the enzymes responsible for the synthesis of acetate esters from higher alcohols). CONCLUSIONS: An integrated approach to yeast metabolism-combining transcriptomic analyses and online monitoring data-showed differences between the two strains at different levels. Differences in nitrogen source consumption were observed suggesting modifications of NCR in the evolved strain. Moreover, the evolved strain showed a different way of managing the lipid source, which notably affected the production of acetate esters, likely because of a greater availability of acetyl-CoA for the evolved strain.


Subject(s)
Lipid Metabolism/drug effects , Nitrogen/pharmacology , Odorants , Saccharomyces cerevisiae/metabolism , Wine/analysis , Fermentation/drug effects , Gene Expression Regulation, Fungal/drug effects , Lipid Metabolism/genetics , Nitrogen/metabolism , Pentanols/metabolism , Principal Component Analysis , Saccharomyces cerevisiae/genetics , Time Factors , Volatile Organic Compounds/analysis
11.
Appl Microbiol Biotechnol ; 99(5): 2291-304, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25412578

ABSTRACT

Volatile compounds produced by yeast during fermentation greatly influence the organoleptic qualities of wine. We developed a model to predict the combined effects of initial nitrogen and phytosterol content and fermentation temperature on the production of volatile compounds. We used a Box-Behnken design and response surface modeling to study the response of Lalvin EC1118® to these environmental conditions. Initial nitrogen content had the greatest influence on most compounds; however, there were differences in the value of fermentation parameters required for the maximal production of the various compounds. Fermentation parameters affected differently the production of isobutanol and isoamyl alcohol, although their synthesis involve the same enzymes and intermediate. We found differences in regulation of the synthesis of acetates of higher alcohols and ethyl esters, suggesting that fatty acid availability is the main factor influencing the synthesis of ethyl esters whereas the production of acetates depends on the activity of alcohol acetyltransferases. We also evaluated the effect of temperature on the total production of three esters by determining gas-liquid balances. Evaporation largely accounted for the effect of temperature on the accumulation of esters in liquid. Nonetheless, the metabolism of isoamyl acetate and ethyl octanoate was significantly affected by this parameter. We extended this study to other strains. Environmental parameters had a similar effect on aroma production in most strains. Nevertheless, the regulation of the synthesis of fermentative aromas was atypical in two strains: Lalvin K1M® and Affinity™ ECA5, which produces a high amount of aromatic compounds and was obtained by experimental evolution.


Subject(s)
Nitrogen/metabolism , Phytosterols/metabolism , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/metabolism , Volatile Organic Compounds/metabolism , Wine/microbiology , Fermentation , Saccharomyces cerevisiae/radiation effects , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...