Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Materials (Basel) ; 17(13)2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38998387

ABSTRACT

Laser hot wire directed energy deposition (LHW-DED) is a layer-by-layer additive manufacturing technique that permits the fabrication of large-scale Ti-6Al-4V (Ti64) components with a high deposition rate and has gained traction in the aerospace sector in recent years. However, one of the major challenges in LHW-DED Ti64 is heat accumulation, which affects the part quality, microstructure, and properties of as-built specimens. These issues require a comprehensive understanding of the layerwise heat-accumulation-driven process-structure-property relationship in as-deposited samples. In this study, a systematic investigation was performed by fabricating three Ti-6Al-4V single-wall specimens with distinct interlayer delays, i.e., 0, 120, and 300 s. The real-time acquisition of high-fidelity thermal data and high-resolution melt pool images were utilized to demonstrate a direct correlation between layerwise heat accumulation and melt pool dimensions. The results revealed that the maximum heat buildup temperature of the topmost layer decreased from 660 °C to 263 °C with an increase to a 300 s interlayer delay, allowing for better control of the melt pool dimensions, which then resulted in improved part accuracy. Furthermore, the investigation of the location-specific composition, microstructure, and mechanical properties demonstrated that heat buildup resulted in the coarsening of microstructures and, consequently, the reduction of micro-hardness with increasing height. Extending the delay by 120 s resulted in a 5% improvement in the mechanical properties, including an increase in the yield strength from 817 MPa to 859 MPa and the ultimate tensile strength from 914 MPa to 959 MPa. Cooling rates estimated at 900 °C using a one-dimensional thermal model based on a numerical method allowed us to establish the process-structure-property relationship for the wall specimens. The study provides deeper insight into the effect of heat buildup in LHW-DED and serves as a guide for tailoring the properties of as-deposited specimens by regulating interlayer delay.

2.
J Synchrotron Radiat ; 30(Pt 4): 796-806, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37255022

ABSTRACT

The recent commissioning of a movable monochromator at the 34-ID-C endstation of the Advanced Photon Source has vastly simplified the collection of Bragg coherent diffraction imaging (BCDI) data from multiple Bragg peaks of sub-micrometre scale samples. Laue patterns arising from the scattering of a polychromatic beam by arbitrarily oriented nanocrystals permit their crystal orientations to be computed, which are then used for locating and collecting several non-co-linear Bragg reflections. The volumetric six-component strain tensor is then constructed by combining the projected displacement fields that are imaged using each of the measured reflections via iterative phase retrieval algorithms. Complications arise when the sample is heterogeneous in composition and/or when multiple grains of a given lattice structure are simultaneously illuminated by the polychromatic beam. Here, a workflow is established for orienting and mapping nanocrystals on a substrate of a different material using scanning Laue diffraction microscopy. The capabilities of the developed algorithms and procedures with both synthetic and experimental data are demonstrated. The robustness is verified by comparing experimental texture maps obtained with Laue diffraction microscopy at the beamline with maps obtained from electron back-scattering diffraction measurements on the same patch of gold nanocrystals. Such tools provide reliable indexing for both isolated and densely distributed nanocrystals, which are challenging to image in three dimensions with other techniques.


Subject(s)
Microscopy , Nanoparticles , X-Ray Diffraction , Synchrotrons , Nanoparticles/chemistry , Algorithms
3.
Data Brief ; 48: 109050, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36969975

ABSTRACT

Hot cracking as the major concern in the manufacturing process of metal alloys is detrimental to part performance and can lead to catastrophic failure. However, current research in this field is restricted to the scarcity of the relevant hot cracking susceptibility data. Here, using the DXR technique provided at 32-ID-B beamline of Advanced Photon Source (APS) at Argonne National Laboratory, we characterized the hot cracking formation in Laser Powder Bed Fusion (L-PBF) process for ten commercial alloys (Al7075, Al6061, Al2024, Al5052, Haynes 230, Haynes 160, Haynes X, Haynes 120, Haynes 214, and Haynes 718). The extracted DXR images captured the post-solidification hot cracking distribution and allow the quantification of the hot cracking susceptibility of those alloys. We further exploited this in our recent effort on hot cracking susceptibility prediction [1] and established a hot cracking susceptibility dataset posted on Mendeley Data for the purpose of facilitating the relevant research in this field.

4.
Science ; 379(6627): 89-94, 2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36603080

ABSTRACT

Porosity defects are currently a major factor that hinders the widespread adoption of laser-based metal additive manufacturing technologies. One common porosity occurs when an unstable vapor depression zone (keyhole) forms because of excess laser energy input. With simultaneous high-speed synchrotron x-ray imaging and thermal imaging, coupled with multiphysics simulations, we discovered two types of keyhole oscillation in laser powder bed fusion of Ti-6Al-4V. Amplifying this understanding with machine learning, we developed an approach for detecting the stochastic keyhole porosity generation events with submillisecond temporal resolution and near-perfect prediction rate. The highly accurate data labeling enabled by operando x-ray imaging allowed us to demonstrate a facile and practical way to adopt our approach in commercial systems.

5.
Nat Commun ; 13(1): 4361, 2022 Jul 27.
Article in English | MEDLINE | ID: mdl-35896545

ABSTRACT

In conventional processing, metals go through multiple manufacturing steps including casting, plastic deformation, and heat treatment to achieve the desired property. In additive manufacturing (AM) the same target must be reached in one fabrication process, involving solidification and cyclic remelting. The thermodynamic and kinetic differences between the solid and liquid phases lead to constitutional undercooling, local variations in the solidification interval, and unexpected precipitation of secondary phases. These features may cause many undesired defects, one of which is the so-called hot cracking. The response of the thermodynamic and kinetic nature of these phenomena to high cooling rates provides access to the knowledge-based and tailored design of alloys for AM. Here, we illustrate such an approach by solving the hot cracking problem, using the commercially important IN738LC superalloy as a model material. The same approach could also be applied to adapt other hot-cracking susceptible alloy systems for AM.

6.
J Acoust Soc Am ; 150(4): 2409, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34717444

ABSTRACT

Metal additive manufacturing is a fabrication method that forms a part by fusing layers of powder to one another. An energy source, such as a laser, is commonly used to heat the metal powder sufficiently to cause a molten pool to form, which is known as the melt pool. The melt pool can exist in the conduction or the keyhole mode where the material begins to rapidly evaporate. The interaction between the laser and the material is physically complex and difficult to predict or measure. In this article, high-speed X-ray imaging was combined with immersion ultrasound to obtain synchronized measurements of stationary laser-generated melt pools. Furthermore, two-dimensional and three-dimensional finite-element simulations were conducted to help explain the ultrasonic response in the experiments. In particular, the time-of-flight and amplitude in pulse-echo configuration were observed to have a linear relationship to the depth of the melt pool. These results are promising for the use of ultrasound to characterize the melt pool behavior and for finite-element simulations to aid in interpretation.

7.
Science ; 370(6520): 1080-1086, 2020 11 27.
Article in English | MEDLINE | ID: mdl-33243887

ABSTRACT

Laser powder bed fusion is a dominant metal 3D printing technology. However, porosity defects remain a challenge for fatigue-sensitive applications. Some porosity is associated with deep and narrow vapor depressions called keyholes, which occur under high-power, low-scan speed laser melting conditions. High-speed x-ray imaging enables operando observation of the detailed formation process of pores in Ti-6Al-4V caused by a critical instability at the keyhole tip. We found that the boundary of the keyhole porosity regime in power-velocity space is sharp and smooth, varying only slightly between the bare plate and powder bed. The critical keyhole instability generates acoustic waves in the melt pool that provide additional yet vital driving force for the pores near the keyhole tip to move away from the keyhole and become trapped as defects.

8.
MethodsX ; 7: 100822, 2020.
Article in English | MEDLINE | ID: mdl-32195139

ABSTRACT

Electrochemical energy devices, such as batteries and fuel cells, contain active electrode components that have highly porous, multiphase microstructures for improved performance. Predictive electrochemical models of solid oxide fuel cell (SOFC) electrode performance based on measured microstructures have been limited to small length scales, a small number of simulations, and/or relatively homogeneous microstructures. To overcome the difficulty in modeling electrochemical activity of inhomogeneous microstructures at considerable length scales, we have developed a high-throughput simulation application that operates on high-performance computing platforms. The open-source application, named Electrochemical Reactions in MIcrostructural NEtworks (ERMINE), is implemented within the MOOSE computational framework, and solves species transport coupled to both three-phase boundary and two-phase boundary electrochemical reactions. As the core component, this application is further incorporated into a high-throughput computational workflow. The main advantages of the workflow include:•Straightforward image-based volumetric meshing that conforms to complex, multi-phased microstructural features•Computation of local electrochemical fields in morphology-resolved microstructures at considerable length scales•Implementation on high performance computing platforms, leading to fast, high-throughput computations.

9.
Science ; 363(6429): 849-852, 2019 Feb 22.
Article in English | MEDLINE | ID: mdl-30792298

ABSTRACT

We used ultrahigh-speed synchrotron x-ray imaging to quantify the phenomenon of vapor depressions (also known as keyholes) during laser melting of metals as practiced in additive manufacturing. Although expected from welding and inferred from postmortem cross sections of fusion zones, the direct visualization of the keyhole morphology and dynamics with high-energy x-rays shows that (i) keyholes are present across the range of power and scanning velocity used in laser powder bed fusion; (ii) there is a well-defined threshold from conduction mode to keyhole based on laser power density; and (iii) the transition follows the sequence of vaporization, depression of the liquid surface, instability, and then deep keyhole formation. These and other aspects provide a physical basis for three-dimensional printing in laser powder bed machines.

10.
Sci Rep ; 9(1): 2499, 2019 Feb 21.
Article in English | MEDLINE | ID: mdl-30792454

ABSTRACT

A high-speed synchrotron X-ray imaging technique was used to investigate the binder jetting additive manufacturing (AM) process. A commercial binder jetting printer with droplet-on-demand ink-jet print-head was used to print single lines on powder beds. The printing process was recorded in real time using high-speed X-ray imaging. The ink-jet droplets showed distinct elongated shape with spherical head, long tail, and three to five trailing satellite droplets. Significant drift was observed between the impact points of main droplet and satellite droplets. The impact of the droplet on the powder bed caused movement and ejection of the powder particles. The depth of disturbance in the powder bed from movement and ejection was defined as interaction depth, which is found to be dependent on the size, shape, and material of the powder particles. For smaller powder particles (diameter less than 10 µm), three consecutive binder droplets were observed to coalesce to form large agglomerates. The observations reported here will facilitate the understanding of underlying physics that govern the binder jetting processes, which will then help in improving the quality of parts manufactured using this AM process.

11.
J Synchrotron Radiat ; 25(Pt 5): 1467-1477, 2018 Sep 01.
Article in English | MEDLINE | ID: mdl-30179187

ABSTRACT

The high-speed synchrotron X-ray imaging technique was synchronized with a custom-built laser-melting setup to capture the dynamics of laser powder-bed fusion processes in situ. Various significant phenomena, including vapor-depression and melt-pool dynamics and powder-spatter ejection, were captured with high spatial and temporal resolution. Imaging frame rates of up to 10 MHz were used to capture the rapid changes in these highly dynamic phenomena. At the same time, relatively slow frame rates were employed to capture large-scale changes during the process. This experimental platform will be vital in the further understanding of laser additive manufacturing processes and will be particularly helpful in guiding efforts to reduce or eliminate microstructural defects in additively manufactured parts.

12.
Sci Rep ; 7(1): 3602, 2017 06 15.
Article in English | MEDLINE | ID: mdl-28620232

ABSTRACT

We employ the high-speed synchrotron hard X-ray imaging and diffraction techniques to monitor the laser powder bed fusion (LPBF) process of Ti-6Al-4V in situ and in real time. We demonstrate that many scientifically and technologically significant phenomena in LPBF, including melt pool dynamics, powder ejection, rapid solidification, and phase transformation, can be probed with unprecedented spatial and temporal resolutions. In particular, the keyhole pore formation is experimentally revealed with high spatial and temporal resolutions. The solidification rate is quantitatively measured, and the slowly decrease in solidification rate during the relatively steady state could be a manifestation of the recalescence phenomenon. The high-speed diffraction enables a reasonable estimation of the cooling rate and phase transformation rate, and the diffusionless transformation from ß to α ' phase is evident. The data present here will facilitate the understanding of dynamics and kinetics in metal LPBF process, and the experiment platform established will undoubtedly become a new paradigm for future research and development of metal additive manufacturing.

13.
Int J Plast ; 752015.
Article in English | MEDLINE | ID: mdl-32831468

ABSTRACT

A thermally-activated constitutive model is developed based on dislocation interactions, crystallographic orientations and microstructural evolution to describe the elasto-plastic stress-strain behavior during multi-axial loading. The aim is to contribute to the quantification of complex strain path response in solid solution strengthened alloys. In detail, dislocation/dislocation interactions are incorporated in the model to quantify latent and kinematic hardening phenomena during loading path changes. Dislocation density-based constitutive relations are included to account for dislocation features such as dislocation forests, walls and channels. Moreover specifically, dislocation/solute atom interactions are also considered in order to account for both dynamic and static strain aging as well as static recovery. The model is validated against multiple multi-axial data sets for AA5754-O with changes of loading path and various degrees of pre-strain and time intervals between tests.

14.
Adv Mater ; 25(48): 6975-9, 2013 Dec 23.
Article in English | MEDLINE | ID: mdl-24352985

ABSTRACT

A novel interface engineering strategy is proposed to simultaneously achieve superior irradiation tolerance, high strength, and high thermal stability in bulk nanolayered composites of a model face-centered-cubic (Cu)/body-centered-cubic (Nb) system. By synthesizing bulk nanolayered Cu-Nb composites containing interfaces with controlled sink efficiencies, a novel material is designed in which nearly all irradiation-induced defects are annihilated.

15.
Microsc Microanal ; 17(3): 362-7, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21600070

ABSTRACT

Strain-induced selective growth was investigated in a 1.5% temper-rolled Fe∼1%Si alloy using the electron backscatter diffraction (EBSD) technique. The EBSD technique was used to quantify the presence of orientation spreads within grains and to show that this particular case of selective growth can be directly related to differences in stored energy as reflected in the geometrically necessary dislocation content. The differences in stored energy were sufficient to give rise to selective growth as evidenced by bi-modal grain sizes.

16.
Ultramicroscopy ; 110(4): 278-84, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20097006

ABSTRACT

A site-specific method for measuring solute segregation at grain boundaries in an Aluminum alloy is presented. A Sigma 7(Sigma 7=38 degrees 111) grain boundary (GB) in an aluminum alloy (Zr, Cu as main alloying elements) was evaluated using site-specific Local Electrode Atom Probe (LEAP). A sample containing a Sigma 7GB was prepared by combining electron backscatter diffraction (EBSD) and focused ion beam (FIB) milling to locate the GB of interest and extract a specimen. Its composition was determined by LEAP, and compared to a general high angle GB (HAGB). Zr was the only alloying element present in the Sigma 7GB, whereas the general HAGB contained both Cu and Zr. This site-specific LEAP method was found to be an accurate method for measuring GB segregation at specific GB misorientations. The method has advantages over other methods of measuring chemistry at GBs, such as spectroscopy, in that GB structure can be assessed in three dimensions.

17.
Acta Mater ; 55(1): 131-139, 2007 Jan.
Article in English | MEDLINE | ID: mdl-18563207

ABSTRACT

The orientation texture of pulsed laser deposited hydroxyapatite coatings was studied by X-ray diffraction techniques. Increasing the laser energy density of the KrF excimer laser used in the deposition process from 5 to 7 J/cm(2) increases the tendency for the c-axes of the hydroxyapatite grains to be aligned perpendicular to the substrate. This preferred orientation is most pronounced when the incidence direction of the plume is normal to the substrate. Orientation texture of the hydroxyapatite grains in the coatings is associated with the highly directional and energetic nature of the ablation plume. Anisotropic stresses, transport of hydroxyl groups and dehydroxylation effects during deposition all seem to play important roles in the texture development.

SELECTION OF CITATIONS
SEARCH DETAIL
...