Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Am J Physiol Heart Circ Physiol ; 325(2): H372-H384, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37389947

ABSTRACT

Stimulation of mechanically sensitive channels on the sensory endings of group III and IV thin fiber muscle afferents activates the mechanoreflex, which contributes to reflex increases in sympathetic nerve activity (SNA) and blood pressure during exercise. Accumulating evidence suggests that activation of the nonselective cation channel transient receptor potential vanilloid-1 (TRPV1) on the sensory endings of thin fiber afferents with capsaicin may attenuate mechanosensation. However, no study has investigated the effect of capsaicin on the mechanoreflex. We tested the hypothesis that in male and female decerebrate, unanesthetized rats, the injection of capsaicin (0.05 µg) into the arterial supply of the hindlimb reduces the pressor and renal SNA (RSNA) response to 30 s of 1 Hz rhythmic hindlimb muscle stretch (a model of isolated mechanoreflex activation). In male rats (n = 8), capsaicin injection significantly reduced the integrated blood pressure (blood pressure index or BPI: pre, 363 ± 78; post, 211 ± 88 mmHg·s; P = 0.023) and RSNA [∫ΔRSNA; pre, 687 ± 206; post, 216 ± 80 arbitrary units (au), P = 0.049] response to hindlimb muscle stretch. In female rats (n = 8), capsaicin injection had no significant effect on the pressor (BPI; pre: 277 ± 67; post: 207 ± 77 mmHg·s; P = 0.343) or RSNA (∫ΔRSNA: pre, 697 ± 123; post, 440 ± 183 au; P = 0.307) response to hindlimb muscle stretch. The data suggest that the injection of capsaicin into the hindlimb arterial supply to stimulate TRPV1 on the sensory endings of thin fiber muscle afferents attenuates the mechanoreflex in healthy male, but not female, rats. The findings may carry important implications for chronic conditions in which an exaggerated mechanoreflex contributes to aberrant sympathoexcitation during exercise.NEW & NOTEWORTHY Recent evidence in isolated sensory neurons indicates that capsaicin-induced stimulation of TRPV1 attenuates mechanosensitivity. Here we demonstrate for the first time that capsaicin exposure/administration reduces the reflex pressor and renal sympathetic nerve response to mechanoreflex activation in male rats, but not female rats, in vivo. Our data may carry important clinical implications for chronic diseases which have been linked to an exaggerated mechanoreflex, at least in males.


Subject(s)
Muscle Contraction , Muscle, Skeletal , Rats , Male , Animals , Capsaicin/pharmacology , Rats, Sprague-Dawley , Reflex , Blood Pressure , Hindlimb
2.
Eur J Sport Sci ; 23(11): 2221-2231, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37199235

ABSTRACT

Extreme-intensity exercise is described by W'ext (analogous to J' for isometric exercise) that is smaller than W' of severe-intensity exercise (W'sev) in males. Sex differences in exercise tolerance appear to diminish at near-maximal exercise, however, there is evidence of greater contributions of peripheral fatigue (i.e. potentiated twitch force; Qpot) in males during extreme-intensity exercise. Therefore, the current study tested the hypotheses that J'ext would not be different between males and females, however, males would exhibit a greater reduction in neuromuscular function (i.e. maximal voluntary contraction, MVC; Qpot) following extreme-intensity exercise. Seven males and 7 females completed three severe- (Tlim: 2-4 min, S3; 5-8 min, S2; 9-15 min, S1) and three extreme-intensity (70, 80, 90%MVC) knee-extension bouts. MVC and Qpot relative to baseline were compared at task failure and at 150 s of recovery. J'ext was significantly less than J'sev in males (2.4 ± 1.2kJ vs 3.9 ± 1.3kJ; p = 0.03) and females (1.6 ± 0.8kJ vs 2.9 ± 1.7kJ; p = 0.05); however, there were no sex differences in J'ext or J'sev. MVC (%Baseline) was greater at task failure following extreme-intensity exercise (76.5 ± 20.0% vs 51.5 ± 11.5% in males, 75.7 ± 19.4% vs 66.7 ± 17.4% in females), but was not different at 150 s of recovery (95.7 ± 11.8% in males, 91.1 ± 14.2% in females). Reduction in Qpot, however, was greater in males (51.9 ± 16.3% vs 60.6 ± 15.5%) and was significantly correlated with J'ext (r2 = 0.90, p < 0.001). Although there were no differences in the magnitude of J'ext, differences in MVC and Qpot are evidence of sex-specific responses and highlight the importance of appropriately characterizing exercise intensity regarding exercise domains when comparing physiological responses in males and females.Highlights We have previously shown evidence that extreme-intensity dynamic exercise is described by W'ext in males and smaller than W'sev. We currently tested for potential sex differences in J'ext (isometric analogue to W') and neuromuscular responses (i.e. maximal voluntary contraction, MVC; potentiated twitch force, Qpot) during extreme-intensity exercise.J'ext and extreme-intensity exercise tolerance was not different between males and females. The reduction in MVC was not different across extreme-intensity exercise across males and females, whereas the reduction in Qpot was greater in males following all extreme-intensity exercises, although not after exercise at 90%MVC.Together, although extreme-intensity exercise tolerance is not different, these data highlight differences in the contributing mechanisms of fatigue during severe- and extreme-intensity exercise between males and females.


Subject(s)
Muscle Fatigue , Sex Characteristics , Humans , Male , Female , Muscle Fatigue/physiology , Knee/physiology , Exercise/physiology , Fatigue , Muscle, Skeletal/physiology , Isometric Contraction/physiology , Electromyography
3.
Am J Physiol Regul Integr Comp Physiol ; 324(2): R183-R195, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36534589

ABSTRACT

We investigated the role played by bradykinin 2 (B2) receptors in the exaggerated exercise pressor reflex in rats with a femoral artery ligated for 72 h to induce simulated peripheral artery disease (PAD). We hypothesized that in decerebrate, unanesthetized rats with a ligated femoral artery, hindlimb arterial injection of HOE-140 (100 ng, B2 receptor antagonist) would reduce the pressor response to 30 s of electrically induced 1 Hz hindlimb skeletal muscle contraction, and 30 s of 1 Hz hindlimb skeletal muscle stretch (a model of mechanoreflex activation isolated from contraction-induced metabolite production). We hypothesized no effect of HOE-140 in sham-operated "freely perfused" rats. In both freely perfused (n = 4) and "ligated" (n = 4) rats, we first confirmed efficacious B2 receptor blockade by demonstrating that HOE-140 injection significantly reduced (P < 0.05) the peak increase in mean arterial pressure (peak ΔMAP) in response to hindlimb arterial injection of bradykinin. In subsequent experiments, we found that HOE-140 reduced the peak ΔMAP response to muscle contraction in ligated (n = 14; control: 23 ± 2; HOE-140: 17 ± 2 mmHg; P = 0.03) but not freely perfused rats (n = 7; control: 17 ± 3; HOE-140: 18 ± 4 mmHg; P = 0.65). Furthermore, HOE-140 had no effect on the peak ΔMAP response to stretch in ligated rats (n = 14; control: 37 ± 4; HOE-140: 32 ± 5 mmHg; P = 0.13) but reduced the integrated area under the blood pressure signal over the final ∼20 s of the maneuver. The data suggest that B2 receptors contribute to the exaggerated exercise pressor reflex in rats with simulated PAD, and that contribution includes a modest role in the chronic sensitization of the mechanically activated channels/afferents that underlie mechanoreflex activation.


Subject(s)
Peripheral Arterial Disease , Reflex , Rats , Animals , Reflex/physiology , Muscle, Skeletal/metabolism , Receptors, Bradykinin/metabolism , Rats, Sprague-Dawley , Bradykinin/pharmacology , Muscle Contraction/physiology , Blood Pressure/physiology , Femoral Artery , Hindlimb/metabolism
4.
Microvasc Res ; 142: 104356, 2022 07.
Article in English | MEDLINE | ID: mdl-35276210

ABSTRACT

Passive heating has been a therapeutic tool used to elevate core temperature and induce increases in cardiac output, blood flow, and shear stress. We aimed to determine the effects of a single bout of passive heating on endothelial function and serum heat shock protein 90α (HSP90α) levels in young, healthy subjects. 8 healthy subjects were recruited to participate in one bout of whole-body passive heating via immersion in a 40 °C hot tub to maintain a 1 °C increase in rectal temperature for 60 min. Twenty-four hours after heating, shear-rate corrected endothelium-dependent dilation increased (pre: 0.004 ± 0.002%SRAUC; post: 0.006 ± 0.003%SRAUC; p = 0.034) but serum [HSP90α] was not changed (pre: 36.7 ± 10.3 ng/mL; post: 40.6 ± 15.9 ng/mL; p = 0.39). Neither resting muscle O2 utilization (pre: 0.17 ± 0.11 mL O2 min-1 (100 g)-1; post: 0.14 ± 0.09 mL O2 min-1 (100 g)-1); p = 0.28) nor mean arterial pressure (pre: 74 ± 11 mmHg; post: 73 ± 11 mmHg; p = 0.79) were influenced by the heating intervention. Finally, time to peak after cuff release was significantly delayed for % O2 sat (TTPpre = 39 ± 8.9 s and TTPpost = 43.5 ± 8.2 s; p = 0.007) and deoxy-[heme] (TTPpre = 41.3 ± 18.1 s and TTPpost = 51.4 ± 16.3 s; p = 0.018), with no effect on oxy-[heme] (p = 0.19) and total-[heme] (p = 0.41). One bout of passive heating improved endothelium-dependent dilation 24 h later in young, healthy subjects. This data suggests that passive heat treatments may provide a simple intervention for improving vascular health.


Subject(s)
Endothelium, Vascular , Heating , Heme , Hot Temperature , Humans , Muscles , Oxygen
5.
J Physiol ; 600(9): 2105-2125, 2022 05.
Article in English | MEDLINE | ID: mdl-35343594

ABSTRACT

Mechanical and metabolic signals associated with skeletal muscle contraction stimulate the sensory endings of thin fibre muscle afferents, which, in turn, generates reflex increases in sympathetic nerve activity (SNA) and blood pressure (the exercise pressor reflex; EPR). EPR activation in patients and animals with heart failure with reduced ejection fraction (HF-rEF) results in exaggerated increases in SNA and promotes exercise intolerance. In the healthy decerebrate rat, a subtype of acid sensing ion channel (ASIC) on the sensory endings of thin fibre muscle afferents, namely ASIC1a, has been shown to contribute to the metabolically sensitive portion of the EPR (i.e. metaboreflex), but not the mechanically sensitive portion of the EPR (i.e. the mechanoreflex). However, the role played by ASIC1a in evoking the EPR in HF-rEF is unknown. We hypothesized that, in decerebrate, unanaesthetized HF-rEF rats, injection of the ASIC1a antagonist psalmotoxin-1 (PcTx-1; 100 ng) into the hindlimb arterial supply would reduce the reflex increase in renal SNA (RSNA) evoked via 30 s of electrically induced static hindlimb muscle contraction, but not static hindlimb muscle stretch (model of mechanoreflex activation isolated from contraction-induced metabolite-production). We found that PcTx-1 reduced the reflex increase in RSNA evoked in response to muscle contraction (n = 8; mean (SD) ∫ΔRSNA pre: 1343 (588) a.u.; post: 816 (573) a.u.; P = 0.026) and muscle stretch (n = 6; ∫ΔRSNA pre: 688 (583) a.u.; post: 304 (370) a.u.; P = 0.025). Our data suggest that, in HF-rEF rats, ASIC1a contributes to activation of the exercise pressor reflex and that contribution includes a novel role for ASIC1a in mechanosensation that is not present in healthy rats. KEY POINTS: Skeletal muscle contraction results in exaggerated reflex increases in sympathetic nerve activity in heart failure patients compared to healthy counterparts, which likely contributes to increased cardiovascular risk and impaired tolerance for even mild exercise (i.e. activities of daily living) for patients suffering with this condition. Activation of acid sensing ion channel subtype 1a (ASIC1a) on the sensory endings of thin fibre muscle afferents during skeletal muscle contraction contributes to reflex increases in sympathetic nerve activity and blood pressure, at least in healthy subjects. In this study, we demonstrate that ASIC1a on the sensory endings of thin fibre muscle afferents plays a role in both the mechanical and metabolic components of the exercise pressor reflex in male rats with heart failure. The present data identify a novel role for ASIC1a in evoking the exercise pressor reflex in heart failure and may have important clinical implications for heart failure patients.


Subject(s)
Acid Sensing Ion Channels , Heart Failure , Acid Sensing Ion Channels/metabolism , Animals , Blood Pressure/physiology , Heart Failure/metabolism , Hindlimb , Male , Muscle Contraction/physiology , Muscle, Skeletal/physiology , Rats , Rats, Sprague-Dawley , Reflex/physiology
6.
Am J Physiol Regul Integr Comp Physiol ; 321(5): R768-R780, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34494467

ABSTRACT

The mechanoreflex is exaggerated in patients with peripheral artery disease (PAD) and in a rat model of simulated PAD in which a femoral artery is chronically (∼72 h) ligated. We found recently that, in rats with a ligated femoral artery, blockade of thromboxane A2 (TxA2) receptors on the sensory endings of thin fiber muscle afferents reduced the pressor response to 1 Hz repetitive/dynamic hindlimb skeletal muscle stretch (a model of mechanoreflex activation isolated from contraction-induced metabolite production). Conversely, we found no effect of TxA2 receptor blockade in rats with freely perfused femoral arteries. Here, we extended the isolated mechanoreflex findings in "ligated" rats to experiments evoking dynamic hindlimb skeletal muscle contractions. We also investigated the role played by inositol 1,4,5-trisphosphate (IP3) receptors, receptors associated with intracellular signaling linked to TxA2 receptors, in the exaggerated response to dynamic mechanoreflex and exercise pressor reflex activation in ligated rats. Injection of the TxA2 receptor antagonist daltroban into the arterial supply of the hindlimb reduced the pressor response to 1 Hz dynamic contraction in ligated but not "freely perfused" rats. Moreover, injection of the IP3 receptor antagonist xestospongin C into the arterial supply of the hindlimb reduced the pressor response to 1 Hz dynamic stretch and contraction in ligated but not freely perfused rats. These findings demonstrate that, in rats with a ligated femoral artery, sensory neuron TxA2 receptor and IP3 receptor-mediated signaling contributes to a chronic sensitization of the mechanically activated channels associated with the mechanoreflex and the exercise pressor reflex.


Subject(s)
Inositol 1,4,5-Trisphosphate Receptors/metabolism , Mechanoreceptors/metabolism , Mechanotransduction, Cellular , Muscle Contraction , Muscle, Skeletal/innervation , Peripheral Arterial Disease/metabolism , Receptors, Thromboxane A2, Prostaglandin H2/metabolism , Reflex , Animals , Disease Models, Animal , Femoral Artery/physiopathology , Femoral Artery/surgery , Ligation , Male , Peripheral Arterial Disease/physiopathology , Rats, Sprague-Dawley
7.
Physiol Rep ; 9(18): e15052, 2021 09.
Article in English | MEDLINE | ID: mdl-34558221

ABSTRACT

Mechanical and metabolic signals associated with skeletal muscle contraction stimulate the sensory endings of thin fiber muscle afferents and produce reflex increases in sympathetic nerve activity and blood pressure during exercise (i.e., the exercise pressor reflex; EPR). The EPR is exaggerated in patients and animals with heart failure with reduced ejection fraction (HF-rEF) and its activation contributes to reduced exercise capacity within this patient population. Accumulating evidence suggests that the exaggerated EPR in HF-rEF is partially attributable to a sensitization of mechanically activated channels produced by thromboxane A2 receptors (TxA2 -Rs) on those sensory endings; however, this has not been investigated. Accordingly, the purpose of this investigation was to determine the role played by TxA2 -Rs on the sensory endings of thin fiber muscle afferents in the exaggerated EPR in rats with HF-rEF induced by coronary artery ligation. In decerebrate, unanesthetized rats, we found that injection of the TxA2 -R antagonist daltroban (80 µg) into the arterial supply of the hindlimb reduced the pressor response to 30 s of electrically induced 1 Hz dynamic hindlimb muscle contraction in HF-rEF (n = 8, peak ∆MAP pre: 22 ± 3; post: 14 ± 2 mmHg; p = 0.01) but not sham (n = 10, peak ∆MAP pre: 13 ± 3; post: 11 ± 2 mmHg; p = 0.68) rats. In a separate group of HF-rEF rats (n = 4), we found that the systemic (intravenous) injection of daltroban had no effect on the EPR (peak ΔMAP pre: 26 ± 7; post: 25 ± 7 mmHg; p = 0.50). Our data suggest that TxA2 -Rs on thin fiber muscle afferents contribute to the exaggerated EPR evoked in response to dynamic muscle contraction in HF-rEF.


Subject(s)
Blood Pressure , Heart Failure/metabolism , Motor Activity , Receptors, Thromboxane A2, Prostaglandin H2/metabolism , Reflex , Animals , Heart Failure/physiopathology , Male , Muscle Contraction , Muscle, Skeletal/metabolism , Muscle, Skeletal/physiology , Nerve Endings/metabolism , Nerve Endings/physiology , Rats , Rats, Sprague-Dawley , Sensory Receptor Cells/metabolism , Sensory Receptor Cells/physiology
8.
Auton Neurosci ; 232: 102784, 2021 05.
Article in English | MEDLINE | ID: mdl-33610008

ABSTRACT

The primary purpose of this investigation was to determine the role played by endoperoxide 4 receptors (EP4-R) and thromboxane A2 receptors (TxA2-R) during isolated dynamic muscle mechanoreflex activation in rats with heart failure with reduced ejection fraction (HF-rEF) and sham-operated healthy controls. We found that injection of the EP4-R antagonist L-161,982 (1 µg) into the arterial supply of the hindlimb had no effect on the peak pressor response to dynamic hindlimb muscle stretch in HF-rEF (n = 6, peak ∆MAP pre: 27 ± 7; post: 27 ± 4 mm Hg; P = 0.99) or sham (n = 6, peak ∆MAP pre: 15 ± 3; post: 13 ± 3 mm Hg; P = 0.67) rats. In contrast, injection of the TxA2-R antagonist daltroban (80 µg) into the arterial supply of the hindlimb reduced the pressor response to dynamic hindlimb muscle stretch in HF-rEF (n = 11, peak ∆MAP pre: 28 ± 4; post: 16 ± 2 mm Hg; P = 0.02) but not sham (n = 8, peak ∆MAP pre: 17 ± 3; post: 16 ± 3; P = 0.84) rats. Our data suggest that TxA2-Rs on thin fibre muscle afferents contribute to the exaggerated mechanoreflex in HF-rEF.


Subject(s)
Heart Failure , Muscle Contraction , Animals , Muscle, Skeletal , Rats , Rats, Sprague-Dawley , Receptors, Thromboxane , Reflex , Thromboxanes
9.
Exp Physiol ; 105(11): 1840-1854, 2020 11.
Article in English | MEDLINE | ID: mdl-32954541

ABSTRACT

NEW FINDINGS: What is the central question of this study? Do endoperoxide 4 and thromboxane A2 receptors, which are receptors for cyclooxygenase products of arachidonic metabolism, on thin fibre muscle afferents play a role in the chronic mechanoreflex sensitization present in rats with heart failure with reduced ejection fraction (HF-rEF)? What is the main finding and its importance? The data do not support a role for endoperoxide 4 receptors or thromboxane A2 receptors in the chronic mechanoreflex sensitization in HF-rEF rats. ABSTRACT: We investigated the role of cyclooxygenase metabolite-associated endoperoxide 4 receptors (EP4-R) and thromboxane A2 receptors (TxA2 -R) on thin fibre muscle afferents in the chronic mechanoreflex sensitization in rats with myocardial infarction-induced heart failure with reduced ejection fraction (HF-rEF). We hypothesized that injection of either the EP4-R antagonist L-161,982 (1 µg) or the TxA2 -R antagonist daltroban (80 µg) into the arterial supply of the hindlimb would reduce the increase in blood pressure and renal sympathetic nerve activity (RSNA) evoked in response to 30 s of static hindlimb skeletal muscle stretch (a model of isolated mechanoreflex activation) in decerebrate, unanaesthetized HF-rEF rats but not sham-operated control rats (SHAM). Ejection fraction was significantly reduced in HF-rEF (45 ± 11%) compared to SHAM (83 ± 6%; P < 0.01) rats. In SHAM and HF-rEF rats, we found that the EP4-R antagonist had no effect on the peak increase in mean arterial pressure (peak ΔMAP SHAM n = 6, pre: 15 ± 7, post: 15 ± 9, P = 0.99; HF-rEF n = 9, pre: 30 ± 11, post: 32 ± 15 mmHg, P = 0.84) or peak increase in RSNA (peak ΔRSNA SHAM pre: 33 ± 14, post: 47 ± 31%, P = 0.94; HF-rEF, pre: 109 ± 47, post: 139 ± 150%, P = 0.76) response to stretch. Similarly, in SHAM and HF-rEF rats, we found that the TxA2 -R antagonist had no effect on the peak ΔMAP (SHAM n = 7, pre: 13 ± 7, post: 19 ± 14, P = 0.15; HF-rEF n = 14, pre: 24 ± 13, post: 21 ± 13 mmHg, P = 0.47) or peak ΔRSNA (SHAM pre: 52 ± 43, post: 57 ± 67%, P = 0.94; HF-rEF, pre: 108 ± 93, post: 88 ± 72%, P = 0.30) response to stretch. The data do not support a role for EP4-Rs or TxA2 -Rs in the chronic mechanoreflex sensitization in HF-rEF.


Subject(s)
Heart Failure , Muscle Contraction , Animals , Blood Pressure , Heart Failure/drug therapy , Heart Failure/metabolism , Muscle Contraction/physiology , Muscle, Skeletal/metabolism , Rats , Rats, Sprague-Dawley , Receptors, Thromboxane/metabolism , Reflex , Thromboxanes/metabolism , Thromboxanes/pharmacology
10.
Am J Physiol Heart Circ Physiol ; 319(2): H320-H330, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32530751

ABSTRACT

The exercise pressor reflex is a feedback autonomic and cardiovascular control mechanism evoked by mechanical and metabolic signals within contracting skeletal muscles. The mechanically sensitive component of the reflex (the mechanoreflex) is exaggerated in patients with peripheral artery disease (PAD) and in a rat model of simulated PAD in which a femoral artery is chronically ligated. Products of cyclooxygenase enzyme activity have been shown to chronically sensitize the mechanoreflex in PAD, but the identity of the muscle afferent receptors that mediate the sensitization is unclear. We hypothesized that injection of the endoperoxide 4 receptor (EP4-R) antagonist L161982 or the thromboxane A2 receptor (TxA2-R) antagonist daltroban into the arterial supply of the hindlimb would reduce the pressor response to repetitive, dynamic hindlimb skeletal muscle stretch (a model of isolated mechanoreflex activation) in rats with a femoral artery that was ligated ~72 h before the experiment but not in rats with freely perfused femoral arteries. We found that EP4-R blockade had no effect on the pressor response (peak Δmean arterial pressure) to stretch in freely perfused (n = 6, pre: 14 ± 2, post: 15 ± 2 mmHg, P = 0.97) or ligated (n = 8, pre: 29 ± 4, post: 29 ± 6 mmHg, P = 0.98) rats. In contrast, TxA2-R blockade had no effect on the pressor response to stretch in freely perfused rats (n = 6, pre: 16 ± 3, post: 17 ± 4 mmHg, P = 0.99) but significantly reduced the response in ligated rats (n = 11, pre: 29 ± 4, post: 17 ± 5 mmHg, P < 0.01). We conclude that TxA2-Rs contribute to chronic mechanoreflex sensitization in the chronic femoral artery-ligated rat model of simulated PAD.NEW & NOTEWORTHY We demonstrate that thromboxane A2 receptors, but not endoperoxide 4 receptors, on the sensory endings of thin fiber muscle afferents contribute to the chronic sensitization of the muscle mechanoreflex in rats with a ligated femoral artery (a model of simulated peripheral artery disease). The data may have important implications for our understanding of blood pressure control during exercise in patients with peripheral artery disease.


Subject(s)
Mechanoreceptors/metabolism , Muscle Contraction , Muscle, Skeletal/innervation , Peripheral Arterial Disease/metabolism , Receptors, Thromboxane A2, Prostaglandin H2/metabolism , Reflex , Animals , Arterial Pressure , Disease Models, Animal , Male , Mechanoreceptors/drug effects , Mechanotransduction, Cellular , Peripheral Arterial Disease/drug therapy , Peripheral Arterial Disease/physiopathology , Phenylacetates/pharmacology , Rats, Sprague-Dawley , Receptors, Prostaglandin E, EP4 Subtype/metabolism , Receptors, Thromboxane A2, Prostaglandin H2/antagonists & inhibitors , Reflex/drug effects , Sulfonamides/pharmacology , Time Factors
11.
Am J Physiol Heart Circ Physiol ; 317(5): H1050-H1061, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31469294

ABSTRACT

Mechanical and metabolic stimuli within contracting skeletal muscles reflexly increase sympathetic nervous system activity and blood pressure. That reflex, termed the exercise pressor reflex, is exaggerated in patients with peripheral artery disease (PAD) and in a rat PAD model with a chronically ligated femoral artery. The cyclooxygenase (COX) pathway contributes to the exaggerated pressor response during rhythmic skeletal muscle contractions in patients with PAD, but the specific mechanism(s) of the COX-mediated exaggeration are not known. In decerebrate, unanesthetized rats with a chronically ligated femoral artery ("ligated" rats), we hypothesized that hindlimb arterial injection of the COX inhibitor indomethacin would reduce the pressor response during 1-Hz dynamic hindlimb skeletal muscle stretch; a model of the activation of the mechanical component of the exercise pressor reflex (i.e., the mechanoreflex). In ligated rats (n = 7), indomethacin reduced the pressor response during stretch (control: 30 ± 4; indomethacin: 12 ± 3 mmHg; P < 0.01), whereas there was no effect in rats with "freely perfused" femoral arteries (n = 6, control: 18 ± 5; indomethacin: 17 ± 5 mmHg; P = 0.87). In ligated rats (n = 4), systemic indomethacin injection had no effect on the pressor response during stretch. Femoral artery ligation had no effect on skeletal muscle COX protein expression or activity or concentration of the COX metabolite prostaglandin E2. Conversely, femoral artery ligation increased expression of the COX metabolite receptors endoperoxide 4 and thromboxane A2-R in dorsal root ganglia tissue. We conclude that, in ligated rats, the COX pathway sensitizes the peripheral endings of mechanoreflex afferents, which occurs principally as a result of increased expression of COX metabolite receptors.NEW & NOTEWORTHY We demonstrate that the mechanoreflex is sensitized by the cyclooxygenase (COX) pathway within hindlimb skeletal muscles in the rat chronic femoral artery ligation model of simulated peripheral artery disease (PAD). The mechanism of sensitization appears attributable to increased receptors for COX metabolites on sensory neurons and not increased concentration of COX metabolites. Our data may carry important clinical implications for patients with PAD who demonstrate exaggerated increases in blood pressure during exercise compared with healthy counterparts.


Subject(s)
Mechanoreceptors/metabolism , Mechanotransduction, Cellular , Muscle Contraction , Muscle, Skeletal/blood supply , Muscle, Skeletal/innervation , Peripheral Arterial Disease/enzymology , Prostaglandin-Endoperoxide Synthases/metabolism , Reflex , Animals , Cyclooxygenase Inhibitors/pharmacology , Dinoprostone/metabolism , Disease Models, Animal , Femoral Artery/physiopathology , Femoral Artery/surgery , Ganglia, Spinal/metabolism , Hindlimb , Indomethacin/pharmacology , Ligation , Male , Peripheral Arterial Disease/physiopathology , Rats, Sprague-Dawley , Receptors, Prostaglandin E, EP4 Subtype/metabolism , Receptors, Thromboxane A2, Prostaglandin H2/metabolism
12.
Am J Physiol Regul Integr Comp Physiol ; 317(3): R369-R378, 2019 09 01.
Article in English | MEDLINE | ID: mdl-31241976

ABSTRACT

Passive limb movement and limb muscle stretch in humans and animals are common experimental strategies used to investigate activation of the muscle mechanoreflex independent of contraction-induced metabolite production. Cyclooxygenase (COX) metabolites, however, are produced by skeletal muscle stretch in vitro and have been found to impact various models of mechanoreflex activation. Whether COX metabolites influence the decerebrate rat triceps surae muscle stretch mechanoreflex model remains unknown. We examined the effect of rat triceps surae muscle stretch on the interstitial concentration of the COX metabolite prostaglandin E2 (PGE2). Interstitial PGE2 concentration was increased above baseline values by 4 min of both static (38% increase, P = 0.01) and dynamic (56% increase, P < 0.01) triceps surae muscle stretch (n = 10). The 4-min protocol was required to collect enough microdialysis fluid for PGE2 detection. The finding that skeletal muscle stretch in vivo was capable of producing COX metabolites prompted the hypothesis that intra-arterial administration of the COX inhibitor indomethacin (1 mg/kg) would reduce the pressor and cardioaccelerator responses evoked during 30 s (the duration most commonly used in the rat mechanoreflex model) of static and dynamic rat triceps surae muscle stretch. We found that indomethacin had no effect (P > 0.05, n = 9) on the pressor or cardioaccelerator response during 30 s of either static or dynamic stretch. We conclude that, despite the possibility of increased COX metabolite concentration, COX metabolites do not activate or sensitize thin-fiber muscle afferents stimulated during 30 s of static or dynamic hindlimb skeletal muscle stretch in healthy rats.


Subject(s)
Blood Pressure/drug effects , Cyclooxygenase Inhibitors/pharmacology , Decerebrate State , Heart Rate/drug effects , Indomethacin/pharmacology , Reflex, Stretch/physiology , Animals , Dinoprostone/metabolism , Male , Mechanoreceptors/drug effects , Mechanoreceptors/physiology , Rats , Rats, Sprague-Dawley
13.
Physiol Rep ; 7(1): e13974, 2019 01.
Article in English | MEDLINE | ID: mdl-30632294

ABSTRACT

Mechanical signals within contracting skeletal muscles contribute to the generation of the exercise pressor reflex; an important autonomic and cardiovascular control mechanism. In decerebrate rats, the mechanically activated channel inhibitor GsMTx4 was found to reduce the pressor response during static hindlimb muscle stretch; a maneuver used to investigate specifically the mechanical component of the exercise pressor reflex (i.e., the mechanoreflex). However, the effect was found only during the initial phase of the stretch when muscle length was changing and not during the later phase of stretch when muscle length was relatively constant. We tested the hypothesis that in decerebrate, unanesthetized rats, GsMTx4 would reduce the pressor response throughout the duration of a 30 sec, 1 Hz dynamic hindlimb muscle stretch protocol that produced repetitive changes in muscle length. We found that the injection of 10 µg of GsMTx4 into the arterial supply of a hindlimb reduced the peak pressor response (control: 15 ± 4, GsMTx4: 5 ± 2 mmHg, P < 0.05, n = 8) and the pressor response at multiple time points throughout the duration of the stretch. GsMTx4 had no effect on the pressor response to the hindlimb arterial injection of lactic acid which indicates the lack of local off-target effects. Combined with the recent finding that GsMTx4 reduced the pressor response only initially during static stretch in decerebrate rats, the present findings suggest that GsMTx4-sensitive channels respond primarily to mechanical signals associated with changes in muscle length. The findings add to our currently limited understanding of the channels that contribute to the activation of the mechanoreflex.


Subject(s)
Blood Pressure , Intercellular Signaling Peptides and Proteins/pharmacology , Muscle Contraction , Muscle, Skeletal/drug effects , Reflex , Spider Venoms/pharmacology , Animals , Decerebrate State , Hindlimb/physiology , Male , Muscle, Skeletal/physiology , Rats , Rats, Sprague-Dawley
14.
Am J Physiol Heart Circ Physiol ; 314(2): H246-H254, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29054973

ABSTRACT

Mechanical and metabolic signals arising during skeletal muscle contraction reflexly increase sympathetic nerve activity and blood pressure (i.e., the exercise pressor reflex). In a rat model of simulated peripheral artery disease in which a femoral artery is chronically (~72 h) ligated, the mechanically sensitive component of the exercise pressor reflex during 1-Hz dynamic contraction is exaggerated compared with that found in normal rats. Whether this is due to an enhanced acute sensitization of mechanoreceptors by metabolites produced during contraction or involves a chronic sensitization of mechanoreceptors is unknown. To investigate this issue, in decerebrate, unanesthetized rats, we tested the hypothesis that the increases in mean arterial blood pressure and renal sympathetic nerve activity during 1-Hz dynamic stretch are larger when evoked from a previously "ligated" hindlimb compared with those evoked from the contralateral "freely perfused" hindlimb. Dynamic stretch provided a mechanical stimulus in the absence of contraction-induced metabolite production that closely replicated the pattern of the mechanical stimulus present during dynamic contraction. We found that the increases in mean arterial blood pressure (freely perfused: 14 ± 1 and ligated: 23 ± 3 mmHg, P = 0.02) and renal sympathetic nerve activity were significantly greater during dynamic stretch of the ligated hindlimb compared with the increases during dynamic stretch of the freely perfused hindlimb. These findings suggest that the exaggerated mechanically sensitive component of the exercise pressor reflex found during dynamic muscle contraction in this rat model of simulated peripheral artery disease involves a chronic sensitizing effect of ligation on muscle mechanoreceptors and cannot be attributed solely to acute contraction-induced metabolite sensitization. NEW & NOTEWORTHY We found that the pressor and sympathetic nerve responses during dynamic stretch were exaggerated in rats with a ligated femoral artery (a model of peripheral artery disease). Our findings provide mechanistic insights into the exaggerated exercise pressor reflex in this model and may have important implications for peripheral artery disease patients.


Subject(s)
Arterial Pressure , Femoral Artery/surgery , Kidney/innervation , Muscle Contraction , Muscle Spindles/metabolism , Muscle, Skeletal/blood supply , Muscle, Skeletal/innervation , Peripheral Arterial Disease/metabolism , Sympathetic Nervous System/physiopathology , Animals , Decerebrate State , Disease Models, Animal , Femoral Artery/physiopathology , Hindlimb , Ligation , Male , Peripheral Arterial Disease/physiopathology , Rats, Sprague-Dawley , Reflex , Time Factors
15.
Am J Physiol Regul Integr Comp Physiol ; 313(4): R463-R472, 2017 Oct 01.
Article in English | MEDLINE | ID: mdl-28724548

ABSTRACT

Hindlimb skeletal muscle stretch (i.e., selective activation of the muscle mechanoreflex) in decerebrate rats evokes reflex increases in blood pressure and sympathetic nerve activity. Bradykinin has been found to sensitize mechanogated channels through a bradykinin B2 receptor-dependent mechanism. Moreover, bradykinin B2 receptor expression on sensory neurons is increased following chronic femoral artery ligation in the rat (a model of simulated peripheral artery disease). We tested the hypothesis that injection of bradykinin into the arterial supply of a hindlimb in decerebrate, unanesthetized rats would acutely augment (i.e., sensitize) the increase in blood pressure and renal sympathetic nerve activity during hindlimb muscle stretch to a greater extent in rats with a ligated femoral artery than in rats with a freely perfused femoral artery. The pressor response during static hindlimb muscle stretch was compared before and after hindlimb arterial injection of 0.5 µg of bradykinin. Injection of bradykinin increased blood pressure to a greater extent in "ligated" (n = 10) than "freely perfused" (n = 10) rats. The increase in blood pressure during hindlimb muscle stretch, however, was not different before vs. after bradykinin injection in freely perfused (14 ± 2 and 15 ± 2 mmHg for pre- and post-bradykinin, respectively, P = 0.62) or ligated (15 ± 3 and 14 ± 2 mmHg for pre- and post-bradykinin, respectively, P = 0.80) rats. Likewise, the increase in renal sympathetic nerve activity during stretch was not different before vs. after bradykinin injection in either group of rats. We conclude that bradykinin did not acutely sensitize the pressor response during hindlimb skeletal muscle stretch in freely perfused or ligated decerebrate rats.


Subject(s)
Bradykinin/pharmacology , Decerebrate State/physiopathology , Hindlimb/drug effects , Muscle Contraction/drug effects , Muscle, Skeletal/drug effects , Reflex/drug effects , Animals , Baroreflex/drug effects , Baroreflex/physiology , Blood Pressure/drug effects , Blood Pressure/physiology , Hindlimb/physiopathology , Male , Muscle Contraction/physiology , Muscle, Skeletal/physiopathology , Rats , Rats, Sprague-Dawley , Reflex/physiology , Sympathetic Nervous System/drug effects , Sympathetic Nervous System/physiopathology
16.
Am J Cancer Res ; 7(12): 2566-2576, 2017.
Article in English | MEDLINE | ID: mdl-29312809

ABSTRACT

Exercise capacity is reduced in prostate cancer patients concurrently treated with androgen deprivation therapy compared to healthy counterparts. We tested the hypothesis that prostate cancer independently reduces endurance exercise capacity in a preclinical orthotopic prostate tumor model. Male Copenhagen rats performed an initial treadmill running test to exhaustion. The rats' prostates were subsequently injected with either prostate tumor cells (R-3327 AT-1, tumor bearing, n=9) or vehicle control (sham, n=9) and the treadmill tests were repeated four and eight weeks post-surgery. Left ventricle contractility (LV Δpressure/Δtime) was subsequently measured under anesthesia and the heart and select hindlimb muscles were dissected and weighed. Initial times to exhaustion were not different between groups (sham: 28.24±1.26, tumor bearing: 28.63±2.49 min, P=0.90). Time to exhaustion eight weeks post-surgery was reduced compared to initial values for both groups but was significantly lower in the tumor bearing (13.25±1.44 min) versus the sham (21.17±1.87 min, P<0.01) group. Within the tumor bearing group, LV Δpressure/Δtime was significantly negatively correlated with tumor mass (-0.71, P<0.05). Body mass at eight weeks post-surgery was not different between groups (P=0.26) but LV mass (↓17%, P<0.01), as well as the mass of select hindlimb skeletal muscles, was significantly lower in the tumor bearing versus sham group. Within the tumor bearing group, LV muscle mass was significantly negatively correlated with prostate tumor mass (r=-0.85, P<0.01). Prostate cancer reduced endurance exercise capacity in the rat and reductions in cardiac function and mass and skeletal muscle mass may have played an important role in this impairment.

SELECTION OF CITATIONS
SEARCH DETAIL
...