Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Methods Mol Biol ; 2792: 251-264, 2024.
Article in English | MEDLINE | ID: mdl-38861093

ABSTRACT

The cis-regulatory elements (CREs) are the short stretches of noncoding DNA upstream of a gene, which play a critical role in fine-tuning gene expression. Photorespiration is a multi-organellar, energy-expensive biochemical process that remains intricately linked to photosynthesis and is conserved in plants. Recently, much focus has been devoted in generating plants with engineered alternative photorespiratory bypasses to enhance photosynthetic efficiency without compromising the beneficial aspect of photorespiration. Varied constitutive or inducible promoters for generating transgenic plants harboring multiple transgenes have been introduced over years; however, most of them suffer from unintended effects. Consequently, a demand for synthetic tunable promoters based on canonical CRE signatures derived from native genes is on the rise. Here, in this chapter, we have provided a detailed method for in silico identification and characterization of CREs associated with photorespiration. In addition to the detailed protocol, we have presented an example of a typical result and explained the significance of the result. Specifically, the method covers how to identify and generate tunable synthetic promoters based on native CREs using three key photorespiratory genes from Arabidopsis and two web-based tools, namely, PlantPAN3.0 and AthaMap. Finally, we have also furnished a protocol on how to test the efficacies of the synthetic promoters harboring predicted CREs using transient tobacco expression coupled with luciferase-based promoter assay in response to ambient conditions and under short-term abiotic stress conditions.


Subject(s)
Arabidopsis , Gene Expression Regulation, Plant , Photosynthesis , Plants, Genetically Modified , Promoter Regions, Genetic , Stress, Physiological , Stress, Physiological/genetics , Arabidopsis/genetics , Photosynthesis/genetics , Plants, Genetically Modified/genetics , Regulatory Sequences, Nucleic Acid/genetics
2.
J Vis Exp ; (190)2022 12 09.
Article in English | MEDLINE | ID: mdl-36571421

ABSTRACT

Photosynthesis and photorespiration represent the largest carbon fluxes in plant primary metabolism and are necessary for plant survival. Many of the enzymes and genes important for photosynthesis and photorespiration have been well studied for decades, but some aspects of these biochemical pathways and their crosstalk with several subcellular processes are not yet fully understood. Much of the work that has identified the genes and proteins important in plant metabolism has been conducted under highly controlled environments that may not best represent how photosynthesis and photorespiration function under natural and farming environments. Considering that abiotic stress results in impaired photosynthetic efficiency, the development of a high-throughput screen that can monitor both abiotic stress and its impact on photosynthesis is necessary. Therefore, we have developed a relatively fast method to screen for abiotic stress-induced changes to photosynthetic efficiency that can identify uncharacterized genes with roles in photorespiration using chlorophyll fluorescence analysis and low CO2 screening. This paper describes a method to study changes in photosynthetic efficiency in transferred DNA (T-DNA) knockout mutants in Arabidopsis thaliana. The same method can be used for screening ethyl methanesulfonate (EMS)-induced mutants or suppressor screening. Utilizing this method can identify gene candidates for further study in plant primary metabolism and abiotic stress responses. Data from this method can provide insight into gene function that may not be recognized until exposure to increased stress environments.


Subject(s)
Arabidopsis , Plant Leaves , Fluorescence , Plant Leaves/metabolism , Photosynthesis/physiology , Arabidopsis/metabolism , Plants/metabolism , Chlorophyll/metabolism , Carbon Dioxide/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...