Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 19(3): 1860-5, 2011 Jan 31.
Article in English | MEDLINE | ID: mdl-21369001

ABSTRACT

The internal structure of nanostructured air-silica fiber probes have been characterized using a combined focused ion beam and scanning electron microscopy technique. The collapse rate of the air-holes is shown to differ substantially between a regular photonic crystal fiber (PCF) and the quasi-periodic Fractal fiber. The integrity of the Fractal fiber structure is maintained down to an outer diameter as small as 120 nm, whereas the air-holes of the regular PCF begin to collapse when the outer diameter is approximately 820 nm. The observed smallest hole diameter of 10 nm is suggested to be due to physical limits imposed by the molecular structure of silica. These results confirm structural inferences made in previous publications.


Subject(s)
Crystallization/methods , Fiber Optic Technology , Models, Chemical , Nanostructures/chemistry , Nanotechnology/instrumentation , Computer Simulation , Equipment Design , Equipment Failure Analysis , Fractals , Light , Materials Testing , Photons , Scattering, Radiation
2.
Opt Express ; 17(3): 1772-80, 2009 Feb 02.
Article in English | MEDLINE | ID: mdl-19189007

ABSTRACT

Scanning Near-field Optical Microscopy (SNOM) is the leading instrument used to image optical fields on the nanometer scale. A metal-coating is typically applied to SNOM probes to define a subwavelength aperture and minimize optical leakage, but the presence of such coatings in the near field of the sample can often cause a substantial change in the sample emission properties. For the first time, the authors demonstrate near-field imaging on a metal substrate with a metal-free probe made from a novel structured optical fiber, designed to maximize optical throughput and potentially remove the need for the metal.

SELECTION OF CITATIONS
SEARCH DETAIL
...