Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Sci Data ; 9(1): 28, 2022 01 31.
Article in English | MEDLINE | ID: mdl-35102154

ABSTRACT

For most people, recalling information about familiar items in a visual scene is an effortless task, but it is one that depends on coordinated interactions of multiple, distributed neural components. We leveraged the high spatiotemporal resolution of direct intracranial recordings to better delineate the network dynamics underpinning visual scene recognition. We present a dataset of recordings from a large cohort of humans while they identified images of famous landmarks (50 individuals, 52 recording sessions, 6,775 electrodes, 6,541 trials). This dataset contains local field potential recordings derived from subdural and penetrating electrodes covering broad areas of cortex across both hemispheres. We provide this pre-processed data with behavioural metrics (correct/incorrect, response times) and electrode localisation in a population-normalised cortical surface space. This rich dataset will allow further investigation into the spatiotemporal progression of multiple neural processes underlying visual processing, scene recognition and cued memory recall.


Subject(s)
Electroencephalography , Memory , Cognition , Humans , Memory/physiology , Mental Recall/physiology , Visual Perception/physiology
2.
J Neurosurg ; 135(1): 245-254, 2020 Aug 14.
Article in English | MEDLINE | ID: mdl-32796145

ABSTRACT

OBJECTIVE: Traditional stereo-electroencephalography (sEEG) entails the use of orthogonal trajectories guided by seizure semiology and arteriography. Advances in robotic stereotaxy and computerized neuronavigation have made oblique trajectories more feasible and easier to implement without formal arteriography. Such trajectories provide access to components of seizure networks not readily sampled using orthogonal trajectories. However, the dogma regarding the relative safety and predictability of orthogonal and azimuth-based trajectories persists, given the absence of data regarding the safety and efficacy of oblique sEEG trajectories. In this study, the authors evaluated the relative accuracy and efficacy of both orthogonal and oblique trajectories during robotic implantation of sEEG electrodes to sample seizure networks. METHODS: The authors performed a retrospective analysis of 150 consecutive procedures in 134 patients, accounting for 2040 electrode implantations. Of these, 837 (41%) were implanted via oblique trajectories (defined as an entry angle > 30°). Accuracy was calculated by comparing the deviation of each electrode at the entry and the target point from the planned trajectory using postimplantation imaging. RESULTS: The mean entry and target deviations were 1.57 mm and 1.89 mm for oblique trajectories compared with 1.38 mm and 1.69 mm for orthogonal trajectories, respectively. Entry point deviation was significantly associated with entry angle, but the impact of this relationship was negligible (-0.015-mm deviation per degree). Deviation at the target point was not significantly affected by the entry angle. No hemorrhagic or infectious complications were observed in the entire cohort, further suggesting that these differences were not meaningful in a clinical context. Of the patients who then underwent definitive procedures after sEEG, 69 patients had a minimum of 12 months of follow-up, of whom 58 (84%) achieved an Engel class I or II outcome during a median follow-up of 27 months. CONCLUSIONS: The magnitude of stereotactic errors in this study falls squarely within the range reported in the sEEG literature, which primarily features orthogonal trajectories. The patient outcomes reported in this study suggest that seizure foci are well localized using oblique trajectories. Thus, the selective use of oblique trajectories in the authors' cohort was associated with excellent safety and efficacy, with no patient incidents, and the findings support the use of oblique trajectories as an effective and safe means of investigating seizure networks.

3.
Brain Stimul ; 11(1): 213-221, 2018.
Article in English | MEDLINE | ID: mdl-29042188

ABSTRACT

BACKGROUND: Direct brain stimulation via electrodes implanted for intracranial electroencephalography (iEEG) permits the modulation of endogenous electrical signals with significantly greater spatial and temporal specificity than non-invasive approaches. It also allows for the stimulation of deep brain structures important to memory, such as the hippocampus, that are difficult, if not impossible, to target non-invasively. Direct stimulation studies of these deep memory structures, though, have produced mixed results, with some reporting improvement, some impairment, and others, no consistent changes. OBJECTIVE/HYPOTHESIS: We hypothesize that to modulate cognitive function using brain stimulation, it is essential to modulate connected nodes comprising a network, rather than just alter local activity. METHODS: iEEG data collected while patients performed a spatiotemporal memory retrieval task were used to map frequency-specific, coherent oscillatory activity between different brain regions associated with successful memory retrieval. We used these to identify two target nodes that exhibited selectively stronger coupling for spatial vs. temporal retrieval. In a subsequent session, electrical stimulation - theta-bursts with a fixed phase-lag (0° or 180°) - was applied to the two target regions while patients performed spatiotemporal retrieval. RESULTS: Stimulation selectively impaired spatial retrieval while not affecting temporal retrieval, and this selective impairment was associated with theta decoupling of the spatial retrieval network. CONCLUSION: These findings suggest that stimulating tightly connected nodes in a functional network at the appropriate phase-lag may effectively modulate the network function, and while in this case it impaired memory processes, it sets a foundation for further network-based perturbation studies.


Subject(s)
Deep Brain Stimulation , Hippocampus/physiopathology , Mental Recall , Adolescent , Adult , Electroencephalography , Female , Humans , Male , Random Allocation , Theta Rhythm , Young Adult
4.
Epilepsia ; 59(1): 244-258, 2018 01.
Article in English | MEDLINE | ID: mdl-29210066

ABSTRACT

OBJECTIVE: Identification of patient-specific epileptogenic networks is critical to designing successful treatment strategies. Multiple noninvasive methods have been used to characterize epileptogenic networks. However, these methods lack the spatiotemporal resolution to allow precise localization of epileptiform activity. We used intracranial recordings, at much higher spatiotemporal resolution, across a cohort of patients with mesial temporal lobe epilepsy (MTLE) to delineate features common to their epileptogenic networks. We used interictal rather than seizure data because interictal spikes occur more frequently, providing us greater power for analyzing variances in the network. METHODS: Intracranial recordings from 10 medically refractory MTLE patients were analyzed. In each patient, hour-long recordings were selected for having frequent interictal discharges and no ictal events. For all possible pairs of electrodes, conditional probability of the occurrence of interictal spikes within a 150-millisecond bin was computed. These probabilities were used to construct a weighted graph between all electrodes, and the node degree was estimated. To assess the relationship of the highly connected regions in this network to the clinically identified seizure network, logistic regression was used to model the regions that were surgically resected using weighted node degree and number of spikes in each channel as factors. Lastly, the conditional spike probability was normalized and averaged across patients to visualize the MTLE network at group level. RESULTS: We generated the first graph of connectivity across a cohort of MTLE patients using interictal activity. The most consistent connections were hippocampus to amygdala, anterior fusiform cortex to hippocampus, and parahippocampal gyrus projections to amygdala. Additionally, the weighted node degree and number of spikes modeled the brain regions identified as seizure networks by clinicians. SIGNIFICANCE: Apart from identifying interictal measures that can model patient-specific epileptogenic networks, we also produce a group map of network connectivity from a cohort of MTLE patients.


Subject(s)
Brain Mapping , Epilepsy, Temporal Lobe/pathology , Temporal Lobe/physiopathology , Adolescent , Adult , Electroencephalography , Epilepsy, Temporal Lobe/diagnostic imaging , Epilepsy, Temporal Lobe/physiopathology , Epilepsy, Temporal Lobe/surgery , Female , Humans , Logistic Models , Male , Middle Aged , Neural Pathways/physiopathology , ROC Curve , Temporal Lobe/diagnostic imaging , Tomography Scanners, X-Ray Computed , Young Adult
5.
Cereb Cortex ; 28(11): 3842-3856, 2018 11 01.
Article in English | MEDLINE | ID: mdl-29028974

ABSTRACT

Cognitive control refers to the ability to produce flexible, goal-oriented behavior in the face of changing task demands and conflicting response tendencies. A classic cognitive control experiment is the Stroop-color naming task, which requires participants to name the color in which a word is written while inhibiting the tendency to read the word. By comparing stimuli with conflicting word-color associations to congruent ones, control processes over response tendencies can be isolated. We assessed the spatial specificity and temporal dynamics in the theta and gamma bands for regions engaged in detecting and resolving conflict in a cohort of 13 patients using a combination of high-resolution surface and depth recordings. We show that cognitive control manifests as a sustained increase in gamma band power, which correlates with response time. Conflict elicits a sustained gamma power increase but a transient theta power increase, specifically localized to the left cingulate sulcus and bilateral dorsolateral prefrontal cortex (DLPFC). Additionally, activity in DLPFC is affected by trial-by-trial modulation of cognitive control (the Gratton effect). Altogether, the sustained local neural activity in dorsolateral and medial regions is what determines the timing of the correct response.


Subject(s)
Conflict, Psychological , Executive Function/physiology , Gamma Rhythm , Gyrus Cinguli/physiology , Prefrontal Cortex/physiology , Theta Rhythm , Adult , Female , Humans , Male , Stroop Test , Time Factors , Young Adult
6.
PLoS One ; 12(11): e0188834, 2017.
Article in English | MEDLINE | ID: mdl-29190811

ABSTRACT

Prevailing theories suggests that cortical regions responsible for face perception operate in a serial, feed-forward fashion. Here, we utilize invasive human electrophysiology to evaluate serial models of face-processing via measurements of cortical activation, functional connectivity, and cortico-cortical evoked potentials. We find that task-dependent changes in functional connectivity between face-selective regions in the inferior occipital (f-IOG) and fusiform gyrus (f-FG) are bidirectional, not feed-forward, and emerge following feed-forward input from early visual cortex (EVC) to both of these regions. Cortico-cortical evoked potentials similarly reveal independent signal propagations between EVC and both f-IOG and f-FG. These findings are incompatible with serial models, and support a parallel, distributed network underpinning face perception in humans.


Subject(s)
Facial Recognition , Adult , Brain Mapping , Evoked Potentials, Visual , Female , Humans , Magnetic Resonance Imaging , Male , Task Performance and Analysis , Young Adult
7.
World Neurosurg ; 104: 467-475, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28502693

ABSTRACT

OBJECTIVE: Laser interstitial thermal therapy has become increasingly popular for targeting epileptic foci in a minimally invasive fashion. Despite its use in >1000 patients, the long-term effects of photothermal injury on brain physiology remain poorly understood. METHODS: We prospectively followed clinical and radiographic courses of 13 patients undergoing laser ablation for focal epilepsy by the senior author (N.T.). Only patients with nonenhancing lesions and patients who had a delayed postoperative magnetic resonance imaging (MRI) scan with gadolinium administration approximately 6 months after ablation were considered. Volumetric estimates of the amount of enhancement immediately after ablation and on the delayed MRI scan were made. RESULTS: Median interval between surgery and delayed postoperative MRI scan was 6 months (range, 5-8 months). In 12 of 13 cases, persistent enhancement was seen, consistent with prolonged blood-brain barrier dysfunction. Enhancement, when present, was 9%-67% (mean 30%). There was no correlation between the time from surgery and the relative percentage of postoperative enhancement on MRI. The blood-brain barrier remained compromised to gadolinium contrast for up to 8 months after thermal therapy. There were no adverse events from surgical intervention; however, 1 patient developed delayed optic neuritis. CONCLUSIONS: Prolonged incompetence of the blood-brain barrier produced by thermal ablation may provide a path for delivery of macromolecules into perilesional tissue, which could be exploited for therapeutic benefit, but rarely it may result in autoimmune central nervous system inflammatory conditions.


Subject(s)
Blood-Brain Barrier/physiology , Drug Resistant Epilepsy/physiopathology , Drug Resistant Epilepsy/surgery , Epilepsies, Partial/physiopathology , Epilepsies, Partial/surgery , Epilepsy, Complex Partial/physiopathology , Epilepsy, Complex Partial/surgery , Epilepsy, Partial, Motor/physiopathology , Epilepsy, Partial, Motor/surgery , Epilepsy, Temporal Lobe/physiopathology , Epilepsy, Temporal Lobe/surgery , Hemianopsia/diagnosis , Hemianopsia/physiopathology , Laser Therapy/methods , Optic Neuritis/diagnosis , Optic Neuritis/physiopathology , Postoperative Complications/diagnosis , Postoperative Complications/physiopathology , Stereotaxic Techniques , Surgery, Computer-Assisted/methods , Adolescent , Adult , Cohort Studies , Computed Tomography Angiography , Contrast Media , Female , Gadolinium , Humans , Image Interpretation, Computer-Assisted , Laser Therapy/instrumentation , Magnetic Resonance Imaging , Male , Middle Aged , Prospective Studies , Surgery, Computer-Assisted/instrumentation , Young Adult
8.
Front Psychol ; 6: 1008, 2015.
Article in English | MEDLINE | ID: mdl-26257673

ABSTRACT

Invasive intracranial EEG (icEEG) offers a unique opportunity to study human cognitive networks at an unmatched spatiotemporal resolution. To date, the contributions of icEEG have been limited to the individual-level analyses or cohorts whose data are not integrated in any way. Here we discuss how grouped approaches to icEEG overcome challenges related to sparse-sampling, correct for individual variations in response and provide statistically valid models of brain activity in a population. By the generation of whole-brain activity maps, grouped icEEG enables the study of intra and interregional dynamics between distributed cortical substrates exhibiting task-dependent activity. In this fashion, grouped icEEG analyses can provide significant advances in understanding the mechanisms by which cortical networks give rise to cognitive functions.

SELECTION OF CITATIONS
SEARCH DETAIL
...