Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Article in English | MEDLINE | ID: mdl-38447814

ABSTRACT

BACKGROUND & AIMS: In phase 2 studies, efruxifermin, an Fc-FGF21 analog, significantly reduced steatohepatitis and fibrosis in patients with non-alcoholic steatohepatitis, now called metabolic dysfunction-associated steatohepatitis (MASH), for which there is no approved treatment. Type 2 diabetes (T2D) and obesity are prevalent among patients with MASH and increasingly treated with glucagon-like peptide-1 receptor agonists (GLP-1RAs). This study evaluated the safety and efficacy of efruxifermin in patients with MASH, fibrosis, and T2D taking a GLP-1RA. METHODS: Cohort D was a double-blind, placebo-controlled, phase 2b study in adults with T2D and MASH with fibrosis (F1-F3) on stable GLP-1RA therapy randomized (2:1) to receive efruxifermin 50 mg or placebo, once weekly for 12 weeks. The primary endpoint was safety and tolerability of efruxifermin added to a stable dose of GLP-1RA. Secondary endpoints included changes in hepatic fat fraction (HFF), markers of liver injury and fibrosis, and metabolic parameters. RESULTS: Adults (N = 31) with T2D and MASH fibrosis (F1-F3) on a stable GLP-1RA (semaglutide, 48.4%; dulaglutide, 45.2%; liraglutide, 6.5%) received efruxifermin 50 mg (n = 21) or placebo (n = 10) for 12 weeks. The addition of efruxifermin to a GLP-1RA appeared safe and well-tolerated. The most frequent efruxifermin-related adverse events were mild to moderate gastrointestinal events. One patient receiving efruxifermin discontinued due to nausea, and another withdrew consent. There were no treatment-related serious adverse events. After 12 weeks, efruxifermin reduced HFF by 65% (P < .0001 vs placebo) compared with a 10% reduction for placebo (GLP-1RA alone). Efruxifermin also improved noninvasive markers of liver injury, fibrosis, glucose, and lipid metabolism while maintaining GLP-1RA-mediated weight loss. CONCLUSIONS: The tolerability profile of efruxifermin added to GLP-1RA appeared comparable to that of either drug alone, while also significantly reducing HFF and noninvasive markers of fibrosis in patients with MASH and T2D. Liver health in patients already on a GLP-1RA may be further improved by addition of efruxifermin. CLINICALTRIALS: gov, Number: NCT05039450.

2.
Lancet Gastroenterol Hepatol ; 8(12): 1080-1093, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37802088

ABSTRACT

BACKGROUND: Fibroblast growth factor 21 (FGF21) regulates metabolism and protects cells against stress. Efruxifermin is a bivalent Fc-FGF21 analogue that replicates FGF21 agonism of fibroblast growth factor receptor 1c, 2c, or 3c. The aim of this phase 2b study was to assess its efficacy and safety in patients with non-alcoholic steatohepatitis (NASH) and moderate (F2) or severe (F3) fibrosis. METHODS: HARMONY is a multicentre, randomised, double-blind, placebo-controlled, 96-week, phase 2b trial that was initiated at 41 clinics in the USA. Adults with biopsy-confirmed NASH, defined by a non-alcoholic fatty liver disease activity score (NAS) of 4 or higher and scores of 1 or higher in each of steatosis, ballooning, and lobular inflammation, with histological stage F2 or F3 fibrosis, were randomly assigned (1:1:1), via an interactive response system, to receive placebo or efruxifermin (28 mg or 50 mg), subcutaneously once weekly. Patients, investigators, pathologists, site staff, and the sponsor were masked to group assignments during the study. The primary endpoint was the proportion of patients with improvement in fibrosis of at least 1 stage and no worsening of NASH, based on analyses of baseline and week 24 biopsies (liver biopsy analysis set [LBAS]). A sensitivity analysis evaluated the endpoint in the full analysis set (FAS), for which patients with missing biopsies were considered non-responders. This trial is registered with ClinicalTrials.gov, NCT04767529, and is ongoing. FINDINGS: Between March 22, 2021, and Feb 7, 2022, 747 patients were assessed for eligibility and 128 patients (mean age 54·7 years [SD 10·4]; 79 [62%] female and 49 male [38%]; 118 [92%] white; and 56 [41%] Hispanic or Latino) were enrolled and randomly assigned to receive placebo (n=43), efruxifermin 28 mg (n=42; two randomised patients were not dosed because of an administrative error), or efruxifermin 50 mg (n=43). In the LBAS (n=113), eight (20%) of 41 patients in the placebo group had an improvement in fibrosis of at least 1 stage and no worsening of NASH by week 24 versus 15 (39%) of 38 patients in the efruxifermin 28 mg group (risk ratio [RR] 2·3 [95% CI 1·1-4·8]; p=0·025) and 14 (41%) of 34 patients in the efruxifermin 50 mg group (2·2 [1·0-5·0]; p=0·036). Based on the FAS (n=128), eight (19%) of 43 patients in the placebo group met this endpoint versus 15 (36%) of 42 in the efruxifermin 28 mg group (RR 2·2 [95% CI 1·0-4·8]; p=0·033) and 14 (33%) of 43 in the efruxifermin 50 mg group (1·9 [0·8-4·3]; p=0·123). The most frequent efruxifermin-related adverse events were diarrhoea (16 [40%] of 40 patients in the efruxifermin 28 mg group and 17 [40%] of 43 patients in efruxifermin 50 mg group vs eight [19%] of 43 patients in the placebo group; all events except one were grade 1-2) and nausea (11 [28%] patients in the efruxifermin 28 mg group and 18 [42%] patients in the efruxifermin 50 mg group vs ten [23%] patients in the placebo group; all grade 1-2). Five patients (two in the 28 mg group and three in the 50 mg group) discontinued due to adverse events. Serious adverse events occurred in four patients in the 50 mg group; one was defined as drug related (ulcerative esophagitis in a participant with a history of gastro-oesophageal reflux disease). No deaths occurred. INTERPRETATION: Efruxifermin improved liver fibrosis and resolved NASH over 24 weeks in patients with F2 or F3 fibrosis, with acceptable tolerability, supporting further assessment in phase 3 trials. FUNDING: Akero Therapeutics.


Subject(s)
Non-alcoholic Fatty Liver Disease , Adult , Female , Humans , Male , Middle Aged , Double-Blind Method , Inflammation , Liver Cirrhosis , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/pathology , Treatment Outcome
3.
J Pharm Biomed Anal ; 232: 115402, 2023 Aug 05.
Article in English | MEDLINE | ID: mdl-37141854

ABSTRACT

Efruxifermin (EFX) is a homodimeric human IgG1 Fc-FGF21 fusion protein undergoing investigation for treatment of liver fibrosis due to nonalcoholic steatohepatitis (NASH), a prevalent and serious metabolic disease for which there is no approved treatment. Biological activity of FGF21 requires its intact C-terminus, which enables binding to its obligate co-receptor ß-Klotho on the surface of target cells. This interaction is a prerequisite for FGF21 signal transduction through its canonical FGF receptors: FGFR1c, 2c, and 3c. Therefore, the C-terminus of each FGF21 polypeptide chain must be intact, with no proteolytic truncation, for EFX to exert its pharmacological activity in patients. A sensitive immunoassay for quantification of biologically active EFX in human serum was therefore needed to support pharmacokinetic assessments in patients with NASH. We present a validated noncompetitive electrochemiluminescent immunoassay (ECLIA) that employs a rat monoclonal antibody for specific capture of EFX via its intact C-terminus. Bound EFX is detected by a SULFO-TAG™-conjugated, affinity purified chicken anti-EFX antiserum. The ECLIA reported herein for quantification of EFX demonstrated suitable analytical performance, with a sensitivity (LLOQ) of 20.0 ng/mL, to support reliable pharmacokinetic assessments of EFX. The validated assay was used to quantify serum EFX concentrations in a phase 2a study of NASH patients (BALANCED) with either moderate-to-advanced fibrosis or compensated cirrhosis. The pharmacokinetic profile of EFX was dose-proportional and did not differ between patients with moderate-to-advanced fibrosis and those with compensated cirrhosis. This report presents the first example of a validated pharmacokinetic assay specific for a biologically active Fc-FGF21 fusion protein, as well as the first demonstration of use of a chicken antibody conjugate as a detection reagent specific for an FGF21 analog.


Subject(s)
Immunoassay , Liver Cirrhosis , Non-alcoholic Fatty Liver Disease , Liver Cirrhosis/drug therapy , Non-alcoholic Fatty Liver Disease/drug therapy , Immunoglobulin G , Recombinant Fusion Proteins/pharmacology , Recombinant Fusion Proteins/therapeutic use , Humans , Animals , Rats
4.
JHEP Rep ; 5(1): 100563, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36644237

ABSTRACT

Background & Aims: Efruxifermin has shown clinical efficacy in patients with non-alcoholic steatohepatitis (NASH) and F1-F3 fibrosis. The primary objective of the BALANCED Cohort C was to assess the safety and tolerability of efruxifermin in patients with compensated NASH cirrhosis. Methods: Patients with NASH and stage 4 fibrosis (n = 30) were randomized 2:1 to receive efruxifermin 50 mg (n = 20) or placebo (n = 10) once-weekly for 16 weeks. The primary endpoint was safety and tolerability of efruxifermin. Secondary and exploratory endpoints included evaluation of non-invasive markers of liver injury and fibrosis, glucose and lipid metabolism, and changes in histology in a subset of patients who consented to end-of-study liver biopsy. Results: Efruxifermin was safe and well-tolerated; most adverse events (AEs) were grade 1 (n = 7, 23.3%) or grade 2 (n = 19, 63.3%). The most frequent AEs were gastrointestinal, including transient, mild to moderate diarrhea, and/or nausea. Significant improvements were noted in key markers of liver injury (alanine aminotransferase) and glucose and lipid metabolism. Sixteen-week treatment with efruxifermin was associated with significant reductions in non-invasive markers of fibrosis including Pro-C3 (least squares mean change from baseline [LSMCFB] -9 µg/L efruxifermin vs. -3.4 µg/L placebo; p = 0.0130) and ELF score (-0.4 efruxifermin vs. +0.4 placebo; p = 0.0036), with a trend towards reduced liver stiffness (LSMCFB -5.7 kPa efruxifermin vs. -1.1 kPa placebo; n.s.). Of 12 efruxifermin-treated patients with liver biopsy after 16 weeks, 4 (33%) achieved fibrosis improvement of at least one stage without worsening of NASH, while an additional 3 (25%) achieved resolution of NASH, compared to 0 of 5 placebo-treated patients. Conclusions: Efruxifermin appeared safe and well-tolerated with encouraging improvements in markers of liver injury, fibrosis, and glucose and lipid metabolism following 16 weeks of treatment, warranting confirmation in larger and longer term studies. Lay summary: Cirrhosis resulting from non-alcoholic steatohepatitis (NASH), the progressive form of non-alcoholic fatty liver disease, represents a major unmet medical need. Currently there are no approved drugs for the treatment of NASH. This proof-of-concept randomized, double-blind clinical trial demonstrated the potential therapeutic benefit of efruxifermin treatment compared to placebo in patients with cirrhosis due to NASH. Clinical Trial Number: NCT03976401.

5.
Nat Med ; 27(7): 1262-1271, 2021 07.
Article in English | MEDLINE | ID: mdl-34239138

ABSTRACT

Preclinical and clinical data suggest that fibroblast growth factor 21 (FGF21) is anti-fibrotic, improves metabolic status and has potential to treat non-alcoholic steatohepatitis (NASH). We assessed the safety and efficacy of efruxifermin, a long-acting Fc-FGF21 fusion protein, for the treatment of NASH. BALANCED was a randomized, placebo-controlled study in patients with NASH conducted at 27 centers in the United States (ClinicalTrials.gov NCT03976401 ). Eighty patients, stratified by hepatic fat fraction (HFF) and fibrosis stage, were randomized using a centrally administered minimization algorithm 1:1:1:1 to receive placebo (n = 21) or efruxifermin 28 mg (n = 19), efruxifermin 50 mg (n = 20) or efruxifermin 70 mg (n = 20) via weekly subcutaneous injection for 16 weeks. The primary endpoint-absolute change from baseline in HFF measured as magnetic resonance imaging-proton density fat fraction at week 12-was met. For the full analysis set, the least squares mean absolute changes (one-sided 97.5% confidence interval) from baseline in HFF were -12.3% (-infinity (-inf), -10.3), -13.4% (-inf, -11.4) and -14.1% (-inf, -12.1) in the 28-, 50- and 70-mg groups, respectively, versus 0.3% (-inf, 1.6) in the placebo group, with statistically significant differences between efruxifermin groups and placebo (P < 0.0001 each). Overall, 70 of 79 patients who received the study drug (89%) experienced at least one treatment-emergent adverse event (TEAE), with the majority grade 1-2 (64 (81%)), five (6%) grade 3 and one grade 4. The most commonly reported drug-related TEAEs were grade 1-2 gastrointestinal (36 (46%)). Treatment with efruxifermin significantly reduced HFF in patients with F1-F3 stage NASH, with an acceptable safety profile.


Subject(s)
Fibroblast Growth Factors/therapeutic use , Immunoglobulin Fc Fragments/therapeutic use , Non-alcoholic Fatty Liver Disease/drug therapy , Recombinant Fusion Proteins/therapeutic use , Body Mass Index , Double-Blind Method , Female , Humans , Liver/pathology , Liver Cirrhosis/drug therapy , Magnetic Resonance Imaging , Male , Middle Aged , Treatment Outcome
6.
Cell Rep ; 33(6): 108375, 2020 11 10.
Article in English | MEDLINE | ID: mdl-33176135

ABSTRACT

Glycine levels are inversely associated with branched-chain amino acids (BCAAs) and cardiometabolic disease phenotypes, but biochemical mechanisms that explain these relationships remain uncharted. Metabolites and genes related to BCAA metabolism and nitrogen handling were strongly associated with glycine in correlation analyses. Stable isotope labeling in Zucker fatty rats (ZFRs) shows that glycine acts as a carbon donor for the pyruvate-alanine cycle in a BCAA-regulated manner. Inhibition of the BCAA transaminase (BCAT) enzymes depletes plasma pools of alanine and raises glycine levels. In high-fat-fed ZFRs, dietary glycine supplementation raises urinary acyl-glycine content and lowers circulating triglycerides but also results in accumulation of long-chain acyl-coenzyme As (acyl-CoAs), lower 5' adenosine monophosphate-activated protein kinase (AMPK) phosphorylation in muscle, and no improvement in glucose tolerance. Collectively, these studies frame a mechanism for explaining obesity-related glycine depletion and also provide insight into the impact of glycine supplementation on systemic glucose, lipid, and amino acid metabolism.


Subject(s)
Glycine/metabolism , Liver/physiopathology , Muscle, Skeletal/physiopathology , Nitrogen/metabolism , Obesity/physiopathology , Amino Acids, Branched-Chain/metabolism , Animals , Male , Rats , Rats, Zucker
7.
Expert Opin Investig Drugs ; 29(2): 197-204, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31948295

ABSTRACT

Introduction: Fibroblast growth factor (FGF) 21 is a member of the FGF19 sub-family of signaling molecules. They have been found to act at the localized paracrine/autocrine and systemic endocrine levels because of their extracellular matrix and co-receptor protein binding characteristics. While the molecule circulates systemically, it has specificity conferred by a co-factor binding protein ß-Klotho which is preferentially expressed in hepatic and adipose tissues. This protein, in conjunction with the FGF receptor (FGFR), propagates the downstream effects of the growth factor signaling cascade, which has been linked to fat and glucose metabolism. FGF21 has been recognized as a possible pathway for the treatment of nonalcoholic fatty liver disease (NAFLD). Targeting of the FGF21/FGFR/ß-Klotho pathway may halt or reverse hepatic fat infiltration, inflammation, and fibrosis.Areas covered: This article summarizes preclinical and clinical data on the efficacy and safety of two FGF21 agonist therapies in development.Expert opinion: Preclinical and clinical data justify further investigation of FGF21 agonist therapies for the treatment of NAFLD. However, issues including injection site reactions and possible effects on bone homeostasis mean that safety must be evaluated carefully.


Subject(s)
Drug Development , Fibroblast Growth Factors/agonists , Non-alcoholic Fatty Liver Disease/drug therapy , Animals , Fibroblast Growth Factors/metabolism , Humans , Klotho Proteins , Membrane Proteins/metabolism , Non-alcoholic Fatty Liver Disease/physiopathology , Receptors, Fibroblast Growth Factor/metabolism , Signal Transduction
8.
Sci Transl Med ; 11(492)2019 05 15.
Article in English | MEDLINE | ID: mdl-31092695

ABSTRACT

Sebum plays important physiological roles in human skin. Excess sebum production contributes to the pathogenesis of acne vulgaris, and suppression of sebum production reduces acne incidence and severity. We demonstrate that sebum production in humans depends on local flux through the de novo lipogenesis (DNL) pathway within the sebocyte. About 80 to 85% of sebum palmitate (16:0) and sapienate (16:1n10) were derived from DNL, based on stable isotope labeling, much higher than the contribution of DNL to triglyceride palmitate in circulation (~20%), indicating a minor contribution by nonskin sources to sebum lipids. This dependence on local sebocyte DNL was not recapitulated in two widely used animal models of sebum production, Syrian hamsters and Göttingen minipigs. Confirming the importance of DNL for human sebum production, an acetyl-CoA carboxylase inhibitor, ACCi-1, dose-dependently suppressed DNL and blocked synthesis of fatty acids, triglycerides, and wax esters but not free sterols in human sebocytes in vitro. ACCi-1 dose-dependently suppressed facial sebum excretion by ~50% (placebo adjusted) in human individuals dosed orally for 2 weeks. Sebum triglycerides, wax esters, and free fatty acids were suppressed by ~66%, whereas non-DNL-dependent lipid species, cholesterol, and squalene were not reduced, confirming selective modulation of DNL-dependent lipids. Last, individuals with acne vulgaris exhibited increased sebum production rates relative to individuals with normal skin, with >80% of palmitate and sapienate derived from DNL. These findings highlight the importance of local sebocyte DNL for human skin sebaceous gland biology and illuminate a potentially exploitable therapeutic target for the treatment of acne vulgaris.


Subject(s)
Acetyl-CoA Carboxylase/antagonists & inhibitors , Acne Vulgaris/enzymology , Enzyme Inhibitors/pharmacology , Lipogenesis , Sebum/metabolism , Acetyl-CoA Carboxylase/metabolism , Adolescent , Adult , Animals , Cells, Cultured , Cricetinae , Enzyme Inhibitors/chemistry , Female , Humans , Lipogenesis/drug effects , Male , Malonyl Coenzyme A/metabolism , Middle Aged , Rats, Wistar , Sebaceous Glands/drug effects , Sebaceous Glands/metabolism , Sebaceous Glands/pathology , Sebum/drug effects , Swine , Swine, Miniature , Triglycerides/biosynthesis , Young Adult
9.
Diabetes Obes Metab ; 19(12): 1762-1772, 2017 12.
Article in English | MEDLINE | ID: mdl-28573777

ABSTRACT

AIMS: To assess the safety, tolerability, pharmacokinetics and pharmacodynamics of PF-05231023, a long-acting fibroblast growth factor 21 (FGF21) analogue, in obese people with hypertriglyceridaemia on atorvastatin, with or without type 2 diabetes. METHODS: Participants received PF-05231023 or placebo intravenously once weekly for 4 weeks. Safety (12-lead ECGs, vital signs, adverse events [AEs], laboratory tests) and longitudinal weight assessments were performed. Blood samples were collected for pharmacokinetic and pharmacodynamic analyses. Cardiovascular safety studies were also conducted in telemetered rats and monkeys. Blood pressure (BP; mean, systolic and diastolic) and ECGs were monitored. RESULTS: A total of 107 people were randomized. PF-05231023 significantly decreased mean placebo-adjusted fasting triglycerides (day 25, 33%-43%) and increased HDL cholesterol (day 25, 15.7%-28.6%) and adiponectin (day 25, 1574 to 3272 ng/mL) across all doses, without significant changes in body weight (day 25, -0.45% to -1.21%). Modest decreases from baseline were observed for N-terminal propeptides of type 1 collagen (P1NP) on day 25, although C-telopeptide cross-linking of type 1 collagen (CTX-1) increased minimally. Systolic, diastolic BP, and pulse rate increased in a dose- and time-related manner. There were 5 serious AEs (one treatment-related) and no deaths. Three participants discontinued because of AEs. The majority of AEs were gastrointestinal. PF-05231023 increased BP and heart rate in rats, but not in monkeys. CONCLUSIONS: Once-weekly PF-05231023 lowered triglycerides markedly in the absence of weight loss, with modest changes in markers of bone homeostasis. This is the first report showing increases in BP and pulse rate in humans and rats after pharmacological administration of a long-acting FGF21 molecule.


Subject(s)
Anti-Obesity Agents/therapeutic use , Antibodies, Monoclonal, Humanized/therapeutic use , Bone Remodeling/drug effects , Fibroblast Growth Factors/therapeutic use , Hypertriglyceridemia/drug therapy , Hypolipidemic Agents/therapeutic use , Obesity/drug therapy , Animals , Anti-Obesity Agents/administration & dosage , Anti-Obesity Agents/adverse effects , Anti-Obesity Agents/pharmacokinetics , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal, Humanized/adverse effects , Antibodies, Monoclonal, Humanized/pharmacokinetics , Biomarkers/blood , Body Mass Index , Delayed-Action Preparations/administration & dosage , Delayed-Action Preparations/adverse effects , Delayed-Action Preparations/pharmacokinetics , Delayed-Action Preparations/therapeutic use , Dose-Response Relationship, Drug , Double-Blind Method , Drug Administration Schedule , Drug Resistance , Female , Fibroblast Growth Factors/administration & dosage , Fibroblast Growth Factors/adverse effects , Fibroblast Growth Factors/pharmacokinetics , Follow-Up Studies , Half-Life , Humans , Hypertension/chemically induced , Hypertension/physiopathology , Hypertriglyceridemia/blood , Hypertriglyceridemia/complications , Hypolipidemic Agents/administration & dosage , Hypolipidemic Agents/adverse effects , Hypolipidemic Agents/pharmacokinetics , Infusions, Intravenous , Male , Middle Aged , Obesity/blood , Obesity/complications , Severity of Illness Index , Species Specificity
10.
Mol Metab ; 5(7): 538-551, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27408778

ABSTRACT

OBJECTIVE: A branched-chain amino acid (BCAA)-related metabolic signature is strongly associated with insulin resistance and predictive of incident diabetes and intervention outcomes. To better understand the role that this metabolite cluster plays in obesity-related metabolic dysfunction, we studied the impact of BCAA restriction in a rodent model of obesity in which BCAA metabolism is perturbed in ways that mirror the human condition. METHODS: Zucker-lean rats (ZLR) and Zucker-fatty rats (ZFR) were fed either a custom control, low fat (LF) diet, or an isonitrogenous, isocaloric LF diet in which all three BCAA (Leu, Ile, Val) were reduced by 45% (LF-RES). We performed comprehensive metabolic and physiologic profiling to characterize the effects of BCAA restriction on energy balance, insulin sensitivity, and glucose, lipid and amino acid metabolism. RESULTS: LF-fed ZFR had higher levels of circulating BCAA and lower levels of glycine compared to LF-fed ZLR. Feeding ZFR with the LF-RES diet lowered circulating BCAA to levels found in LF-fed ZLR. Activity of the rate limiting enzyme in the BCAA catabolic pathway, branched chain keto acid dehydrogenase (BCKDH), was lower in liver but higher in skeletal muscle of ZFR compared to ZLR and was not responsive to diet in either tissue. BCAA restriction had very little impact on metabolites studied in liver of ZFR where BCAA content was low, and BCKDH activity was suppressed. However, in skeletal muscle of LF-fed ZFR compared to LF-fed ZLR, where BCAA content and BCKDH activity were increased, accumulation of fatty acyl CoAs was completely normalized by dietary BCAA restriction. BCAA restriction also normalized skeletal muscle glycine content and increased urinary acetyl glycine excretion in ZFR. These effects were accompanied by lower RER and improved skeletal muscle insulin sensitivity in LF-RES fed ZFR as measured by hyperinsulinemic-isoglycemic clamp. CONCLUSIONS: Our data are consistent with a model wherein elevated circulating BCAA contribute to development of obesity-related insulin resistance by interfering with lipid oxidation in skeletal muscle. BCAA-dependent lowering of the skeletal muscle glycine pool appears to contribute to this effect by slowing acyl-glycine export to the urine.

11.
ACS Chem Biol ; 11(9): 2529-40, 2016 09 16.
Article in English | MEDLINE | ID: mdl-27391855

ABSTRACT

Lysophospholipase-like 1 (LYPLAL1) is an uncharacterized metabolic serine hydrolase. Human genome-wide association studies link variants of the gene encoding this enzyme to fat distribution, waist-to-hip ratio, and nonalcoholic fatty liver disease. We describe the discovery of potent and selective covalent small-molecule inhibitors of LYPLAL1 and their use to investigate its role in hepatic metabolism. In hepatocytes, selective inhibition of LYPLAL1 increased glucose production supporting the inference that LYPLAL1 is a significant actor in hepatic metabolism. The results provide an example of how a selective chemical tool can contribute to evaluating a hypothetical target for therapeutic intervention, even in the absence of complete biochemical characterization.


Subject(s)
Hydrolases/metabolism , Lysophospholipase/antagonists & inhibitors , Serine/metabolism , Animals , Crystallization , Crystallography, X-Ray , Enzyme Inhibitors/pharmacology , Humans , Lysophospholipase/chemistry
12.
J Am Soc Nephrol ; 27(11): 3459-3468, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27113485

ABSTRACT

Diabetic nephropathy (DN) is the leading cause of ESRD worldwide. Reduced bioavailability or uncoupling of nitric oxide in the kidney, leading to decreased intracellular levels of the nitric oxide pathway effector molecule cyclic guanosine monophosphate (cGMP), has been implicated in the progression of DN. Preclinical studies suggest that elevating the cGMP intracellular pool through inhibition of the cGMP-hydrolyzing enzyme phosphodiesterase type 5 (PDE5) might exert renoprotective effects in DN. To test this hypothesis, the novel, highly specific, and long-acting PDE5 inhibitor, PF-00489791, was assessed in a multinational, multicenter, randomized, double-blind, placebo-controlled, parallel group trial of subjects with type 2 diabetes mellitus and overt nephropathy receiving angiotensin converting enzyme inhibitor or angiotensin receptor blocker background therapy. In total, 256 subjects with an eGFR between 25 and 60 ml/min per 1.73 m2 and macroalbuminuria defined by a urinary albumin-to-creatinine ratio >300 mg/g, were randomly assigned 3:1, respectively, to receive PF-00489791 (20 mg) or placebo orally, once daily for 12 weeks. Using the predefined primary assessment of efficacy (Bayesian analysis with informative prior), we observed a significant reduction in urinary albumin-to-creatinine ratio of 15.7% (ratio 0.843; 95% credible interval 0.73 to 0.98) in response to the 12-week treatment with PF-00489791 compared with placebo. PF-00489791 was safe and generally well tolerated in this patient population. Most common adverse events were mild in severity and included headache and upper gastrointestinal events. In conclusion, the safety and efficacy profile of PDE5 inhibitor PF-00489791 supports further investigation as a novel therapy to improve renal outcomes in DN.


Subject(s)
Albuminuria/drug therapy , Albuminuria/etiology , Diabetic Nephropathies/complications , Heterocyclic Compounds, 2-Ring/therapeutic use , Phosphodiesterase 5 Inhibitors/therapeutic use , Sulfonamides/therapeutic use , Adult , Aged , Aged, 80 and over , Albuminuria/enzymology , Double-Blind Method , Female , Humans , Male , Middle Aged
13.
Cell Metab ; 23(3): 427-40, 2016 Mar 08.
Article in English | MEDLINE | ID: mdl-26959184

ABSTRACT

FGF21 plays a central role in energy, lipid, and glucose homeostasis. To characterize the pharmacologic effects of FGF21, we administered a long-acting FGF21 analog, PF-05231023, to obese cynomolgus monkeys. PF-05231023 caused a marked decrease in food intake that led to reduced body weight. To assess the effects of PF-05231023 in humans, we conducted a placebo-controlled, multiple ascending-dose study in overweight/obese subjects with type 2 diabetes. PF-05231023 treatment resulted in a significant decrease in body weight, improved plasma lipoprotein profile, and increased adiponectin levels. Importantly, there were no significant effects of PF-05231023 on glycemic control. PF-05231023 treatment led to dose-dependent changes in multiple markers of bone formation and resorption and elevated insulin-like growth factor 1. The favorable effects of PF-05231023 on body weight support further evaluation of this molecule for the treatment of obesity. Longer studies are needed to assess potential direct effects of FGF21 on bone in humans.


Subject(s)
Anti-Obesity Agents/pharmacology , Antibodies, Monoclonal, Humanized/pharmacology , Diabetes Mellitus, Type 2/drug therapy , Fibroblast Growth Factors/pharmacology , Obesity/drug therapy , Adolescent , Adult , Aged , Animals , Anti-Obesity Agents/therapeutic use , Antibodies, Monoclonal, Humanized/therapeutic use , Blood Glucose , Body Weight/drug effects , Diabetes Mellitus, Type 2/blood , Drug Evaluation, Preclinical , Female , Fibroblast Growth Factors/therapeutic use , Gene Expression/drug effects , Humans , Insulin/blood , Lipid Metabolism/drug effects , Macaca fascicularis , Male , Middle Aged , Obesity/blood , Subcutaneous Fat/drug effects , Subcutaneous Fat/metabolism , Weight Loss , Young Adult
14.
Cell Rep ; 14(2): 243-54, 2016 Jan 12.
Article in English | MEDLINE | ID: mdl-26748706

ABSTRACT

Lysine acetylation (AcK), a posttranslational modification wherein a two-carbon acetyl group binds covalently to a lysine residue, occurs prominently on mitochondrial proteins and has been linked to metabolic dysfunction. An emergent theory suggests mitochondrial AcK occurs via mass action rather than targeted catalysis. To test this hypothesis, we performed mass spectrometry-based acetylproteomic analyses of quadriceps muscles from mice with skeletal muscle-specific deficiency of carnitine acetyltransferase (CrAT), an enzyme that buffers the mitochondrial acetyl-CoA pool by converting short-chain acyl-CoAs to their membrane permeant acylcarnitine counterparts. CrAT deficiency increased tissue acetyl-CoA levels and susceptibility to diet-induced AcK of broad-ranging mitochondrial proteins, coincident with diminished whole body glucose control. Sub-compartment acetylproteome analyses of muscles from obese mice and humans showed remarkable overrepresentation of mitochondrial matrix proteins. These findings reveal roles for CrAT and L-carnitine in modulating the muscle acetylproteome and provide strong experimental evidence favoring the nonenzymatic carbon pressure model of mitochondrial AcK.


Subject(s)
Carnitine O-Acetyltransferase/metabolism , Lysine/metabolism , Mitochondrial Proteins/metabolism , Acetylation , Animals , Humans , Mice
15.
J Med Chem ; 59(3): 1165-75, 2016 Feb 11.
Article in English | MEDLINE | ID: mdl-26734723

ABSTRACT

Inhibition of the sodium-coupled citrate transporter (NaCT or SLC13A5) has been proposed as a new therapeutic approach for prevention and treatment of metabolic diseases. In a previous report, we discovered dicarboxylate 1a (PF-06649298) which inhibits the transport of citrate in in vitro and in vivo settings via a specific interaction with NaCT. Herein, we report the optimization of this series leading to 4a (PF-06761281), a more potent inhibitor with suitable in vivo pharmacokinetic profile for assessment of in vivo pharmacodynamics. Compound 4a was used to demonstrate dose-dependent inhibition of radioactive [(14)C]citrate uptake in liver and kidney in vivo, resulting in modest reductions in plasma glucose concentrations.


Subject(s)
Citrates/metabolism , Malates/chemistry , Malates/pharmacology , Phenylbutyrates/chemistry , Phenylbutyrates/pharmacology , Pyridines/chemistry , Pyridines/pharmacology , Symporters/antagonists & inhibitors , Animals , Biological Transport/drug effects , Blood Glucose/metabolism , Citrates/pharmacokinetics , Dose-Response Relationship, Drug , HEK293 Cells , Hepatocytes/drug effects , Humans , Kidney/drug effects , Kidney/metabolism , Liver/drug effects , Liver/metabolism , Malates/administration & dosage , Male , Mice , Mice, Inbred C57BL , Mice, Obese , Molecular Structure , Phenylbutyrates/administration & dosage , Pyridines/administration & dosage , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship , Symporters/metabolism
16.
PLoS One ; 10(12): e0145136, 2015.
Article in English | MEDLINE | ID: mdl-26691557

ABSTRACT

Carbon cycling on the east coast of Australia has the potential to be strongly affected by El Niño-Southern Oscillation (ENSO) intensification and coastal development (industrialization and urbanization). We performed paleoreconstructions of estuarine sediments from a seagrass-dominated estuary on the east coast of Australia (Tuggerah Lake, New South Wales) to test the hypothesis that millennial-scale ENSO intensification and European settlement in Australia have increased the transfer of organic carbon from land into coastal waters. Our data show that carbon accumulation rates within coastal sediments increased significantly during periods of maximum millennial-scale ENSO intensity ("super-ENSO") and coastal development. We suggest that ENSO and coastal development destabilize and liberate terrestrial soil carbon, which, during rainfall events (e.g., La Niña), washes into estuaries and becomes trapped and buried by coastal vegetation (seagrass in this case). Indeed, periods of high carbon burial were generally characterized as having rapid sedimentation rates, higher content of fine-grained sediments, and increased content of wood and charcoal fragments. These results, though preliminary, suggest that coastal development and ENSO intensification--both of which are predicted to increase over the coming century--can enhance capture and burial of terrestrial carbon by coastal ecosystems. These findings have important relevance for current efforts to build an understanding of terrestrial-marine carbon connectivity into global carbon budgets.


Subject(s)
Carbon Footprint , Lakes , Models, Theoretical , Australia
17.
Sci Rep ; 5: 17391, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26620127

ABSTRACT

Citrate is a key regulatory metabolic intermediate as it facilitates the integration of the glycolysis and lipid synthesis pathways. Inhibition of hepatic extracellular citrate uptake, by blocking the sodium-coupled citrate transporter (NaCT or SLC13A5), has been suggested as a potential therapeutic approach to treat metabolic disorders. NaCT transports citrate from the blood into the cell coupled to the transport of sodium ions. The studies herein report the identification and characterization of a novel small dicarboxylate molecule (compound 2) capable of selectively and potently inhibiting citrate transport through NaCT, both in vitro and in vivo. Binding and transport experiments indicate that 2 specifically binds NaCT in a competitive and stereosensitive manner, and is recognized as a substrate for transport by NaCT. The favorable pharmacokinetic properties of 2 permitted in vivo experiments to evaluate the effect of inhibiting hepatic citrate uptake on metabolic endpoints.


Subject(s)
Citric Acid/metabolism , Symporters/antagonists & inhibitors , HEK293 Cells , Humans , Ion Transport/drug effects , Symporters/genetics , Symporters/metabolism
18.
J Clin Invest ; 125(10): 3847-60, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-26389676

ABSTRACT

Insulin secretion from ß cells of the pancreatic islets of Langerhans controls metabolic homeostasis and is impaired in individuals with type 2 diabetes (T2D). Increases in blood glucose trigger insulin release by closing ATP-sensitive K+ channels, depolarizing ß cells, and opening voltage-dependent Ca2+ channels to elicit insulin exocytosis. However, one or more additional pathway(s) amplify the secretory response, likely at the distal exocytotic site. The mitochondrial export of isocitrate and engagement with cytosolic isocitrate dehydrogenase (ICDc) may be one key pathway, but the mechanism linking this to insulin secretion and its role in T2D have not been defined. Here, we show that the ICDc-dependent generation of NADPH and subsequent glutathione (GSH) reduction contribute to the amplification of insulin exocytosis via sentrin/SUMO-specific protease-1 (SENP1). In human T2D and an in vitro model of human islet dysfunction, the glucose-dependent amplification of exocytosis was impaired and could be rescued by introduction of signaling intermediates from this pathway. Moreover, islet-specific Senp1 deletion in mice caused impaired glucose tolerance by reducing the amplification of insulin exocytosis. Together, our results identify a pathway that links glucose metabolism to the amplification of insulin secretion and demonstrate that restoration of this axis rescues ß cell function in T2D.


Subject(s)
Diabetes Mellitus, Type 2/physiopathology , Endopeptidases/physiology , Insulin/metabolism , Islets of Langerhans/metabolism , Isocitrates/metabolism , Animals , Catalytic Domain , Cell Membrane/metabolism , Cysteine Endopeptidases , Diabetes Mellitus, Type 2/pathology , Endopeptidases/biosynthesis , Endopeptidases/deficiency , Endopeptidases/genetics , Exocytosis/drug effects , Exocytosis/physiology , Gene Knockout Techniques , Glucose/metabolism , Glucose/pharmacology , Glutathione/pharmacology , HEK293 Cells , Homeostasis , Humans , Insulin/pharmacology , Insulin Secretion , Islets of Langerhans/physiopathology , Isocitrate Dehydrogenase/physiology , Isocitrates/pharmacology , Male , Membrane Potentials , Mice , Mice, Inbred C57BL , NADP/metabolism , Organ Specificity , RNA Interference , Recombinant Fusion Proteins/metabolism , Secretory Vesicles/metabolism , Signal Transduction , Sumoylation
19.
Diabetologia ; 58(10): 2324-35, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26254576

ABSTRACT

AIMS/HYPOTHESES: Obesity is associated with decreased insulin sensitivity (IS) and elevated plasma branched-chain amino acids (BCAAs). The purpose of this study was to investigate the relationship between BCAA metabolism and IS in overweight (OW) individuals during exercise intervention. METHODS: Whole-body leucine turnover, IS by hyperinsulinaemic-euglycaemic clamp, and circulating and skeletal muscle amino acids, branched-chain α-keto acids and acylcarnitines were measured in ten healthy controls (Control) and nine OW, untrained, insulin-resistant individuals (OW-Untrained). OW-Untrained then underwent a 6 month aerobic and resistance exercise programme and repeated testing (OW-Trained). RESULTS: IS was higher in Control vs OW-Untrained and increased significantly following exercise. IS was lower in OW-Trained vs Control expressed relative to body mass, but was not different from Control when normalised to fat-free mass (FFM). Plasma BCAAs and leucine turnover (relative to FFM) were higher in OW-Untrained vs Control, but did not change on average with exercise. Despite this, within individuals, the decrease in molar sum of circulating BCAAs was the best metabolic predictor of improvement in IS. Circulating glycine levels were higher in Control and OW-Trained vs OW-Untrained, and urinary metabolic profiling suggests that exercise induces more efficient elimination of excess acyl groups derived from BCAA and aromatic amino acid (AA) metabolism via formation of urinary glycine adducts. CONCLUSIONS/INTERPRETATION: A mechanism involving more efficient elimination of excess acyl groups derived from BCAA and aromatic AA metabolism via glycine conjugation in the liver, rather than increased BCAA disposal through oxidation and turnover, may mediate interactions between exercise, BCAA metabolism and IS. TRIAL REGISTRATION: Clinicaltrials.gov NCT01786941.


Subject(s)
Amino Acids, Branched-Chain/metabolism , Exercise/physiology , Glycine/metabolism , Insulin Resistance/physiology , Overweight/metabolism , Resistance Training , Adult , Blood Glucose/metabolism , Glucose Clamp Technique , Humans , Liver/metabolism , Male , Middle Aged , Muscle, Skeletal/metabolism , Overweight/therapy , Treatment Outcome
20.
Sci Rep ; 5: 11382, 2015 Jul 08.
Article in English | MEDLINE | ID: mdl-26153793

ABSTRACT

FGF21 is a key metabolic regulator modulating physiological processes and its pharmacological administration improves metabolic profile in preclinical species and humans. We used native-FGF21 and a long-acting FGF21 (PF-05231023), to determine the contribution of liver and brown adipose tissue (BAT) towards metabolic improvements in Zucker rats and DIO mice (DIOs). FGF21 improved glucose tolerance and liver insulin sensitivity in Zuckers without affecting BW and improved liver function by decreased lipogenesis, increased fatty acid oxidation and improved insulin signaling. Through detailed lipidomic analyses of liver metabolites in DIOs, we demonstrate that FGF21 favorably alters liver metabolism. We observed a dose-dependent increase of [(18)F]-FDG-glucose uptake in interscapular BAT (iBAT) of DIOs upon FGF21 administration. Upon excision of iBAT (X-BAT) and administration of FGF21 to mice housed at 80 °F or 72 °F, the favorable effects of FGF21 on BW and glucose excursion were fully retained in both sham and X-BAT animals. Taken together, we demonstrate the liver as an organ that integrates the actions of FGF21 and provide metabolic benefits of FGF21 in Zucker rats and DIOs. Finally, our data demonstrates iBAT does not play a role in mediating favorable metabolic effects of FGF21 administration in DIOs housed at 80 °F or 72 °F.


Subject(s)
Adipose Tissue, Brown/metabolism , Fibroblast Growth Factors/metabolism , Insulin Resistance , Liver/metabolism , Obesity/metabolism , Adipose Tissue, Brown/drug effects , Animals , Antibodies, Monoclonal, Humanized/pharmacology , Disease Models, Animal , Fatty Acids/metabolism , Fibroblast Growth Factors/pharmacology , Glucose/metabolism , Homeostasis/drug effects , Liver/drug effects , Mice , Rats , Rats, Zucker
SELECTION OF CITATIONS
SEARCH DETAIL
...