Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 45(6): 2144-9, 2011 Mar 15.
Article in English | MEDLINE | ID: mdl-21319734

ABSTRACT

Diurnal variations in diazinon volatilization were monitored in three field experiments conducted with differing soil moisture contents. The highest flux rates in all experiments were recorded just after diazinon application, but the magnitudes of those initial rates differed according to the soil moisture content, with wetter soil producing a higher rate: 5.6 × 10(-4) µg cm(-2) min(-1) for initial soil moisture above field capacity, 8.3 × 10(-5) µg cm(-2) min(-1) for initial soil moisture at field capacity, and 2.5 × 10(-5) µg cm(-2) min(-1) for initially very dry soil. Volatilization decreased during the first day in the two experiments with initially wet soils but remained relatively constant in the experiment with initially dry soil. The volatilization rate during the first night for the wettest soil remained about an order-of-magnitude higher than that observed for driest soil. When the surface dried in the experiment conducted at the intermediate water content, the volatilization rate and temporal pattern transitioned and became similar to that observed for the initially dry soil. Around noon of the second day, a daily maximum value was observed in the volatilization rate for wet soil, whereas a minimum value was observed for the dry soil, resulting in an order-of magnitude difference. This study demonstrates the importance of soil moisture on emissions of pesticides to the atmosphere.


Subject(s)
Air Pollutants/chemistry , Diazinon/chemistry , Insecticides/chemistry , Soil/chemistry , Air Pollutants/analysis , Diazinon/analysis , Insecticides/analysis , Pesticide Residues/analysis , Pesticide Residues/chemistry , Seasons , Volatilization
2.
FEMS Microbiol Ecol ; 76(2): 278-88, 2011 May.
Article in English | MEDLINE | ID: mdl-21284679

ABSTRACT

The effect of nitrate, acetate, and hydrogen on native perchlorate-reducing bacteria (PRB) was examined by conducting microcosm tests using vadose soil collected from a perchlorate-contaminated site. The rate of perchlorate reduction was enhanced by hydrogen amendment and inhibited by acetate amendment, compared with unamendment. Nitrate was reduced before perchlorate in all amendments. In hydrogen-amended and unamended soils, nitrate delayed perchlorate reduction, suggesting that the PRB preferentially use nitrate as an electron acceptor. In contrast, nitrate eliminated the inhibitory effect of acetate amendment on perchlorate reduction and increased the rate and the extent, possibly because the preceding nitrate reduction/denitrification decreased the acetate concentration that was inhibitory to the native PRB. In hydrogen-amended and unamended soils, perchlorate reductase gene (pcrA) copies, representing PRB densities, increased with either perchlorate or nitrate reduction, suggesting that either perchlorate or nitrate stimulates the growth of the PRB. In contrast, in acetate-amended soil pcrA increased only when perchlorate was depleted: a large portion of the PRB may have not utilized nitrate in this amendment. Nitrate addition did not alter the distribution of the dominant pcrA clones in hydrogen-amended soil, likely because of the functional redundancy of PRB as nitrate-reducers/denitrifiers, whereas acetate selected different pcrA clones from those with hydrogen amendment.


Subject(s)
Acetates/metabolism , Bacteria/metabolism , Hydrogen/metabolism , Nitrates/metabolism , Perchlorates/metabolism , Soil Microbiology , Bacteria/genetics , Biodegradation, Environmental , DNA, Bacterial/genetics , Denitrification , Oxidation-Reduction , Oxidoreductases/genetics , RNA, Ribosomal, 16S/genetics , Soil/chemistry , Soil Pollutants/metabolism
3.
Ecol Appl ; 20(7): 1805-19, 2010 Oct.
Article in English | MEDLINE | ID: mdl-21049871

ABSTRACT

Despite the importance of agriculture in California's Central Valley, the potential of alternative management practices to reduce soil greenhouse gas (GHG) emissions has been poorly studied in California. This study aims at (1) calibrating and validating DAYCENT, an ecosystem model, for conventional and alternative cropping systems in California's Central Valley, (2) estimating CO2, N2O, and CH4 soil fluxes from these systems, and (3) quantifying the uncertainty around model predictions induced by variability in the input data. The alternative practices considered were cover cropping, organic practices, and conservation tillage. These practices were compared with conventional agricultural management. The crops considered were beans, corn, cotton, safflower, sunflower, tomato, and wheat. Four field sites, for which at least five years of measured data were available, were used to calibrate and validate the DAYCENT model. The model was able to predict 86-94% of the measured variation in crop yields and 69-87% of the measured variation in soil organic carbon (SOC) contents. A Monte Carlo analysis showed that the predicted variability of SOC contents, crop yields, and N2O fluxes was generally smaller than the measured variability of these parameters, in particular for N2O fluxes. Conservation tillage had the smallest potential to reduce GHG emissions among the alternative practices evaluated, with a significant reduction of the net soil GHG fluxes in two of the three sites of 336 +/- 47 and 550 +/- 123 kg CO2-eq x ha(-1) x yr(-1) (mean +/- SE). Cover cropping had a larger potential, with net soil GHG flux reductions of 752 +/- 10, 1072 +/- 272, and 2201 +/- 82 kg CO2-eq x ha(-1) x yr(-1). Organic practices had the greatest potential for soil GHG flux reduction, with 4577 +/- 272 kg CO2-eq x ha(-1) x yr(-1). Annual differences in weather or management conditions contributed more to the variance in annual GHG emissions than soil variability did. We concluded that the DAYCENT model was successful at predicting GHG emissions of different alternative management systems in California, but that a sound error analysis must accompany the predictions to understand the risks and potentials of GHG mitigation through adoption of alternative practices.


Subject(s)
Agriculture/methods , Methane/chemistry , Nitrous Oxide/chemistry , Solanum lycopersicum/metabolism , Zea mays/metabolism , Air Pollutants/chemistry , Air Pollutants/metabolism , California , Computer Simulation , Crops, Agricultural , Greenhouse Effect , Methane/metabolism , Models, Biological , Nitrous Oxide/metabolism , Time Factors
4.
J Environ Qual ; 35(3): 714-25, 2006.
Article in English | MEDLINE | ID: mdl-16585613

ABSTRACT

There is a lack of understanding of how associations among soil properties and management-induced changes control the variability of greenhouse gas (GHG) emissions from soil. We performed a laboratory investigation to quantify relationships between GHG emissions and soil indicators in an irrigated agricultural field under standard tillage (ST) and a field recently converted (2 yr) to no-tillage (NT). Soil cores (15-cm depth) were incubated at 25 degrees C at field moisture content and 75% water holding capacity. Principal component analysis (PCA) identified that most of the variation of the measured soil properties was related to differences in soil C and N and soil water conditions under ST, but soil texture and bulk density under NT. This trend became more apparent after irrigation. However, principal component regression (PCR) suggested that soil physical properties or total C and N were less important in controlling GHG emissions across tillage systems. The CO2 flux was more strongly determined by microbial biomass under ST and inorganic N content under NT than soil physical properties. Similarly, N2O and CH4 fluxes were predominantly controlled by NO3- content and labile C and N availability in both ST and NT soils at field moisture content, and NH4+ content after irrigation. Our study indicates that the field-scale variability of GHG emissions is controlled primarily by biochemical parameters rather than physical parameters. Differences in the availability and type of C and N sources for microbial activity as affected by tillage and irrigation develop different levels and combinations of field-scale controls on GHG emissions.


Subject(s)
Crops, Agricultural , Gases , Biomass , Carbon Dioxide/analysis , Methane/analysis , Nitrous Oxide/analysis
5.
Appl Environ Microbiol ; 71(7): 3928-34, 2005 Jul.
Article in English | MEDLINE | ID: mdl-16000806

ABSTRACT

Perchlorate contamination is a concern because of the increasing frequency of its detection in soils and groundwater and its presumed inhibitory effect on human thyroid hormone production. Although significant perchlorate contamination occurs in the vadose (unsaturated) zone, little is known about perchlorate biodegradation potential by indigenous microorganisms in these soils. We measured the effects of electron donor (acetate and hydrogen) and nitrate addition on perchlorate reduction rates and microbial community composition in microcosm incubations of vadose soil. Acetate and hydrogen addition enhanced perchlorate reduction, and a longer lag period was observed for hydrogen (41 days) than for acetate (14 days). Initially, nitrate suppressed perchlorate reduction, but once perchlorate started to be degraded, the process was stimulated by nitrate. Changes in the bacterial community composition were observed in microcosms enriched with perchlorate and either acetate or hydrogen. Denaturing gradient gel electrophoresis analysis and partial sequencing of 16S rRNA genes recovered from these microcosms indicated that formerly reported perchlorate-reducing bacteria were present in the soil and that microbial community compositions were different between acetate- and hydrogen-amended microcosms. These results indicate that there is potential for perchlorate bioremediation by native microbial communities in vadose soil.


Subject(s)
Azospirillum/metabolism , Ecosystem , Nitrates/metabolism , Perchlorates/metabolism , Rhodospirillales/metabolism , Sodium Compounds/metabolism , Soil Microbiology , Acetates/metabolism , Azospirillum/classification , Azospirillum/genetics , Azospirillum/isolation & purification , Culture Media , DNA, Bacterial/analysis , Humans , Hydrogen/metabolism , Molecular Sequence Data , Oxidation-Reduction , RNA, Ribosomal, 16S/genetics , Rhodospirillales/classification , Rhodospirillales/genetics , Rhodospirillales/isolation & purification , Sequence Analysis, DNA
6.
J Environ Qual ; 32(1): 40-6, 2003.
Article in English | MEDLINE | ID: mdl-12549540

ABSTRACT

Perchlorate (ClO4-) contamination of ground water and surface water is a widespread problem, particularly in the western United States. This study examined the effect of biodegradation on perchlorate fate and transport in soils. Solute transport experiments were conducted on two surface soils. Pulses of solution containing perchlorate and Br- were applied to saturated soil columns at steady state water flow. Perchlorate behaved like a nonreactive tracer in Columbia loam (coarse-loamy, mixed, superactive, nonacid, thermic Oxyaquic Xerofluvent) but was degraded in Yolo loam (fine-silty, mixed, superactive, nonacid, thermic Mollic Xerofluvent). Batch experiments demonstrated that perchlorate removal from solution in Yolo loam was caused by biodegradation. Other batch experiments with Yolo loam surface and subsurface soils, Columbia loam surface soil, and dredge tailings demonstrated that perchlorate biodegradation required anaerobic conditions, an adequate carbon source, and an active perchlorate-degrading microbial population. The sequential reduction of perchlorate and NO3- by an indigenous soil microbial community in Yolo loam batch systems was also studied. Nitrate reduction occurred much sooner than perchlorate reduction in soils that had not been previously exposed to perchlorate, but NO3- and perchlorate were simultaneously reduced in soils previously exposed to perchlorate. The results of this study have implications for in situ remediation schemes and for agricultural soils that have been contaminated by perchlorate-tainted irrigation water.


Subject(s)
Perchlorates/metabolism , Sodium Compounds/metabolism , Soil Pollutants/metabolism , Water Pollutants, Chemical/metabolism , Biodegradation, Environmental , Environmental Monitoring , Nitrates/chemistry , Nitrates/metabolism , Oxidation-Reduction , Perchlorates/analysis , Sodium Compounds/analysis , Soil Microbiology , Soil Pollutants/analysis , Water Pollutants, Chemical/analysis
7.
J Environ Qual ; 31(6): 1774-81, 2002.
Article in English | MEDLINE | ID: mdl-12469825

ABSTRACT

Chambers are commonly used to measure the emission of many trace gases and chemicals from soil. An aerodynamic (flow through) chamber was designed and fabricated to accurately measure the surface flux of trace gases. Flow through the chamber was controlled with a small vacuum at the outlet. Due to the design using fans, a partition plate, and aerodynamic ends, air is forced to sweep parallel and uniform over the entire soil surface. A fraction of the air flowing inside the chamber is sampled in the outlet. The air velocity inside the chamber is controlled by fan speed and outlet suction flow rate. The chamber design resulted in a uniform distribution of air velocity at the soil surface. Steady state flux was attained within 5 min when the outlet air suction rate was 20 L/min or higher. For expected flux rates, the presence of the chamber did not affect the measured fluxes at outlet suction rates of around 20 L/min, except that the chamber caused some cooling of the surface in field experiments. Sensitive measurements of the pressure deficit across the soil layer in conjunction with measured fluxes in the source box and chamber outlet show that the outflow rate must be controlled carefully to minimize errors in the flux measurements. Both over- and underestimation of the fluxes are possible if the outlet flow rate is not controlled carefully. For this design, the chamber accurately measured steady flux at outlet air suction rates of approximately 20 L/min when the pressure deficit within the chamber with respect to the ambient atmosphere ranged between 0.46 and 0.79 Pa.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring/instrumentation , Models, Theoretical , Air Movements , Equipment Design , Gases
SELECTION OF CITATIONS
SEARCH DETAIL
...