Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 15(13)2023 Jun 23.
Article in English | MEDLINE | ID: mdl-37447436

ABSTRACT

Understanding the mechanics of fiber attrition during the extrusion process is highly important in predicting the strength of long fiber-reinforced thermoplastic composites. However, little work has been done to investigate the mechanics of fiber dispersion and its effects on fiber attrition. This study aims at investigating fiber dispersion in simple shear flows for long fiber-reinforced thermoplastic pellets. Depending on the fabrication process, fiber bundles display distinct levels of compaction within the pellets. Studies have shown that morphological differences can lead to differences in dispersion mechanics; therefore, using a Couette rheometer and a sliding plate rheometer, coated and pultruded pellets were subjected to simple shear deformation, and the amount of dispersion was quantified. Additionally, a new image-based analysis method is presented in this study to measure fiber dispersion for a multi-pellet-filled system. Results from the single-pellet dispersion study showed a small amount of correlation between the dimensionless morphological parameter and the dispersion measurement. Pultruded and coated pellets were both found to have similar dispersion rates in a multi-pellet system. However, pultruded pellets were found to have a higher dispersion value at all levels when compared with coated pellets in both dispersion studies.

2.
Polymers (Basel) ; 14(11)2022 May 31.
Article in English | MEDLINE | ID: mdl-35683934

ABSTRACT

Natural rubber formulation methodologies implemented within industry primarily implicate a high dependence on the formulator's experience as it involves an educated guess-and-check process. The formulator must leverage their experience to ensure that the number of iterations to the final blend composition is minimized. The study presented in this paper includes the implementation of blend formulation methodology that targets material properties relevant to the application in which the product will be used by incorporating predictive models, including linear regression, response surface method (RSM), artificial neural networks (ANNs), and Gaussian process regression (GPR). Training of such models requires data, which is equal to financial resources in industry. To ensure minimum experimental effort, the dataset is kept small, and the model complexity is kept simple, and as a proof of concept, the predictive models are used to reverse engineer a current material used in the footwear industry based on target viscoelastic properties (relaxation behavior, tanδ, and hardness), which all depend on the amount of crosslinker, plasticizer, and the quantity of voids used to create the lightweight high-performance material. RSM, ANN, and GPR result in prediction accuracy of 90%, 97%, and 100%, respectively. It is evident that the testing accuracy increases with algorithm complexity; therefore, these methodologies provide a wide range of tools capable of predicting compound formulation based on specified target properties, and with a wide range of complexity.

SELECTION OF CITATIONS
SEARCH DETAIL
...