Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Bio Mater ; 2(7): 2726-2737, 2019 Jul 15.
Article in English | MEDLINE | ID: mdl-35030808

ABSTRACT

Biofouling disrupts the surface functionality and integrity of engineered substrates. A variety of natural materials such as plant leaves and insect wings have evolved sophisticated physical mechanisms capable of preventing biofouling. Over the past decade, several reports have pinpointed nanoscale surface topography as an important regulator of surface adhesion and growth of bacteria. Although artificial nanoengineered features have been used to create bactericidal materials that kill adhered bacteria, functional surfaces capable of synergistically providing antiadhesion and bactericidal properties remain to be developed. Furthermore, fundamental questions pertaining to the need for intrinsic hydrophobicity to achieve bactericidal performance and the role of structure length scale (nano vs micro) are still being explored. Here, we demonstrate highly scalable, cost-effective, and efficient nanoengineered multifunctional surfaces that possess both antiadhesion and bactericidal properties on industrially relevant copper (Cu) and aluminum (Al) substrates. We characterize antiadhesion and bactericidal performance using a combination of scanning electron microscopy (SEM), atomic force microscopy (AFM), live/dead bacterial staining and imaging, as well as solution-phase and Petrifilm measurements of bacterial viability. Our results showed that nanostructures created on both Cu and Al were capable of physical deformation of adhered Escherichia coli bacteria. Bacterial viability measurements on both Cu and Al indicated a complex interaction between the antiadhesion and bactericidal nature of these materials and their surface topography, chemistry, and structure. Increased superhydrophobicity greatly decreased bacterial adhesion while not significantly influencing surface bactericidal performance. Furthermore, we observed that more densely packed nanoscale structures improved antiadhesion properties when compared to larger features, even over extended time scales of up to 24 h. Our data suggests that the superhydrophobic Al substrate possesses superior antiadhesion and bactericidal effects, even over long time courses. The techniques and insights presented here will inform future work on antiadhesion and bactericidal multifunctional surfaces and enable their rational design.

2.
J Am Chem Soc ; 141(3): 1359-1365, 2019 01 23.
Article in English | MEDLINE | ID: mdl-30576593

ABSTRACT

In prior generations, proteins were taken from horses and other animals to make glues. Petroleum-derived polymers including epoxies and cyanoacrylates have since replaced proteins owing to improved performance. These modern materials come at a cost of toxicity as well as being derived from limited resources. Ideally, replacement adhesives will be made from benign, cheap, and renewable feedstocks. Such a transition to biobased materials, however, will not occur until similar or improved performance can be achieved. We have discovered that coupling of proteins and sugars gives rise to strong adhesives. An unexpected connection was made between adhesion and Maillard chemistry, known to be at the heart of cooking foods. Cross-linked proteins bonded metal and wood with high strengths, in some cases showing forces exceeding those withstood by the substrates themselves. Simple cooking chemistry may provide a route to future high-performance materials derived from low-cost, environmentally benign components.


Subject(s)
Adhesives/chemistry , Ascorbic Acid/chemistry , Serum Albumin, Bovine/chemistry , Soybean Proteins/chemistry , Adhesiveness , Adhesives/chemical synthesis , Animals , Cattle , Heating , Lysine/chemistry , Maillard Reaction , Solubility , Glycine max , Viscosity
3.
Anal Bioanal Chem ; 410(7): 1911-1921, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29380018

ABSTRACT

Laser-ablation electrospray ionization (LAESI) imaging mass spectrometry (IMS) is an emerging bioanalytical tool for direct imaging and analysis of biological tissues. Performing ionization in an ambient environment, this technique requires little sample preparation and no additional matrix, and can be performed on natural, uneven surfaces. When combined with optical microscopy, the investigation of biological samples by LAESI allows for spatially resolved compositional analysis. We demonstrate here the applicability of LAESI-IMS for the chemical analysis of thin, desiccated biological samples, specifically Neotibicen pruinosus cicada wings. Positive-ion LAESI-IMS accurate ion-map data was acquired from several wing cells and superimposed onto optical images allowing for compositional comparisons across areas of the wing. Various putative chemical identifications were made indicating the presence of hydrocarbons, lipids/esters, amines/amides, and sulfonated/phosphorylated compounds. With the spatial resolution capability, surprising chemical distribution patterns were observed across the cicada wing, which may assist in correlating trends in surface properties with chemical distribution. Observed ions were either (1) equally dispersed across the wing, (2) more concentrated closer to the body of the insect (proximal end), or (3) more concentrated toward the tip of the wing (distal end). These findings demonstrate LAESI-IMS as a tool for the acquisition of spatially resolved chemical information from fragile, dried insect wings. This LAESI-IMS technique has important implications for the study of functional biomaterials, where understanding the correlation between chemical composition, physical structure, and biological function is critical. Graphical abstract Positive-ion laser-ablation electrospray ionization mass spectrometry coupled with optical imaging provides a powerful tool for the spatially resolved chemical analysis of cicada wings.


Subject(s)
Hemiptera/chemistry , Spectrometry, Mass, Electrospray Ionization/methods , Wings, Animal/chemistry , Amides/analysis , Amines/analysis , Animals , Esters/analysis , Hemiptera/anatomy & histology , Hydrocarbons/analysis , Laser Therapy , Lipids/analysis , Phosphorus Compounds/analysis , Sulfones/analysis
4.
ACS Appl Mater Interfaces ; 9(32): 27173-27184, 2017 Aug 16.
Article in English | MEDLINE | ID: mdl-28719187

ABSTRACT

Evolutionary pressure has pushed many extant species to develop micro/nanostructures that can significantly affect wettability and enable functionalities such as droplet jumping, self-cleaning, antifogging, antimicrobial, and antireflectivity. In particular, significant effort is underway to understand the insect wing surface structure to establish rational design tools for the development of novel engineered materials. Most studies, however, have focused on superhydrophobic wings obtained from a single insect species, in particular, the Psaltoda claripennis cicada. Here, we investigate the relationship between the spatially dependent wing wettability, topology, and droplet jumping behavior of multiple cicada species and their habitat, lifecycle, and interspecies relatedness. We focus on cicada wings of four different species: Neotibicen pruinosus, N. tibicen, Megatibicen dorsatus, and Magicicada septendecim and take a comparative approach. Using spatially resolved microgoniometry, scanning electron microscopy, atomic force microscopy, and high speed optical microscopy, we show that within cicada species, the wettability of wings is spatially homogeneous across wing cells. All four species were shown to have truncated conical pillars with widely varying length scales ranging from 50 to 400 nm in height. Comparison of the wettability revealed three cicada species with wings that are superhydrophobic (>150°) with low contact angle hysteresis (<5°), resulting in stable droplet jumping behavior. The fourth, more distantly related species (Ma. septendecim) showed only moderate hydrophobic behavior, eliminating some of the beneficial surface functional aspects for this cicada. Correlation between cicada habitat and wing wettability yielded little connection as wetter, swampy environments do not necessarily equate to higher measured wing hydrophobicity. The results, however, do point to species relatedness and reproductive strategy as a closer proxy for predicting wettability and surface structure and resultant enhanced wing surface functionality. This work not only elucidates the differences between inter- and intraspecies cicada wing topology, wettability, and water shedding behavior but also enables the development of rational design tools for the manufacture of artificial surfaces for energy and water applications.


Subject(s)
Hemiptera , Animals , Ecosystem , Hydrophobic and Hydrophilic Interactions , Surface Properties , Wettability , Wings, Animal
5.
Angew Chem Int Ed Engl ; 53(43): 11506-9, 2014 Oct 20.
Article in English | MEDLINE | ID: mdl-25196134

ABSTRACT

Metastable precursors are thought to play a major role in the ability of organisms to create mineralized tissues. Of particular interest are the hard and abrasion-resistant teeth formed by chitons, a class of rock-grazing mollusks. The formation of chiton teeth relies on the precipitation of metastable ferrihydrite (Fh) in an organic scaffold as a precursor to magnetite. In vitro synthesis of Fh under physiological conditions has been challenging. Using a combination of X-ray absorption and electron paramagnetic resonance spectroscopy, we show that, prior to Fh formation in the chiton tooth, iron ions are complexed by the organic matrix. In vitro experiments demonstrate that such complexes facilitate the formation of Fh under physiological conditions. These results indicate that acidic molecules may be integral to controlling Fh formation in the chiton tooth. This biological approach to polymorph selection is not limited to specialized proteins and can be expropriated using simple chemistry.


Subject(s)
Ferric Compounds/chemical synthesis , Polyplacophora/chemistry , Animals , Electron Spin Resonance Spectroscopy , X-Ray Absorption Spectroscopy , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...