Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
JDS Commun ; 1(2): 25-28, 2020 Nov.
Article in English | MEDLINE | ID: mdl-36341150

ABSTRACT

Lactococcus lactis strains are widely used in the dairy industry in fermentation processes for production of cheese and fermented milks. However, the esterolytic activity of L. lactis is not generally considered high. For this reason, purified microbial lipases and esterases are often added in certain dairy processes to generate specific flavors in the final food product. This work demonstrates the superior esterolytic activity of a collection of L. lactis strains isolated from different environmental sources compared with that of dairy-derived strains. It provides further evidence of the more diverse metabolic capabilities displayed by L. lactis strains from environmental sources compared to their domesticated dairy counterparts. Furthermore, the presence of a 1,287-bp gene encoding a 428-amino acid SGNH hydrolase in the high-esterolytic environmental strains suggests a possible link between superior esterolytic activity and the presence of the esterase from the SGNH hydrolase family.

2.
Microbiol Resour Announc ; 8(35)2019 Aug 29.
Article in English | MEDLINE | ID: mdl-31467105

ABSTRACT

Lactococcus lactis has been used for millennia as a starter organism in the production of many fermented dairy products. This announcement includes the draft genome sequences of four strains of Lactococcus lactis, two of dairy origin and two from nondairy sources.

3.
Front Microbiol ; 7: 1577, 2016.
Article in English | MEDLINE | ID: mdl-27746776

ABSTRACT

A collection of desiccation-tolerant xeroprotectant-producing microorganisms was screened for their ability to protect plants against drought, and their role as plant growth-promoting rhizobacteria was investigated in two different crops (tomato and pepper). The most commonly described biochemical mechanisms for plant protection against drought by microorganisms including the production of phytohormones, antioxidants and xeroprotectants were analyzed. In particular, the degree of plant protection against drought provided by these microorganisms was characterized. After studying the findings and comparing them with results of the closest taxonomic relatives at the species and strain levels, we propose that trehalose produced by these microorganisms is correlated with their ability to protect plants against drought. This proposal is based on the increased protection of plants against drought by the desiccation-sensitive microorganism Pseudomonas putida KT2440, which expresses the otsAB genes for trehalose biosynthesis in trans.

SELECTION OF CITATIONS
SEARCH DETAIL
...