Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 200: 186-195, 2017 Sep 15.
Article in English | MEDLINE | ID: mdl-28577454

ABSTRACT

This work evaluates the use of biomasses and their biochars as adsorbents to remove polycyclic aromatic hydrocarbons from water. Coconut waste (CW) and orange waste (OW) were pyrolyzed at 350 °C to produce the corresponding biochars (BCW and BOW). Adsorption tests using a mixed solution of benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, and dibenzo(a,h)anthracene showed removal percentages of 30.33-83.43% (CW), 47.09-83.02% (BCW), 24.20-74.25% (OW), and 23.84-84.02% (BOW). The adsorption mechanisms appeared to involve π-π interactions of similar groups of the adsorbate and adsorbent, together with hydrophobic effects. There was no indication of competition between the PAHs for the adsorption sites, and there was evidence of cooperative adsorption. The PAHs could be desorbed from the adsorbents with efficiencies in the range 34.88-72.32%, and the reuse of the adsorbents in two further cycles demonstrated their potential for use in the removal of PAHs from water.


Subject(s)
Charcoal , Polycyclic Aromatic Hydrocarbons , Water Purification , Benzo(a)pyrene , Biomass
2.
J Environ Manage ; 129: 216-23, 2013 Nov 15.
Article in English | MEDLINE | ID: mdl-23954388

ABSTRACT

This work proposes the use of tree termite nest as an adsorbent for the reduction/removal of Cr(VI) present in aqueous solution. In laboratory experiments, adsorption of Cr(VI) was sensitive to pH in the range investigated (2-5), with maximum adsorption capacity achieved at pH 2 (3.70 ± 0.04 mg g(-1), representing 93.2% removal of Cr). The termite nest was characterized by off-line pyrolysis GC/MS (py-GC/MS), infrared spectroscopy (FTIR), and electron paramagnetic resonance spectroscopy (EPR). Pyrolysis of the adsorbent produced a complex mixture of aromatic compounds, including the guaiacyl and syringilic derivatives that are characteristic of lignocellulosic materials. Infrared spectroscopy revealed deprotonation of the carboxylic acid group of the biomass with increasing pH, which was associated with a decrease in the capacity for adsorption of Cr(VI). The EPR g-factor for the termite nest samples varied between 2.0037 and 2.0038, indicating the presence of organic free radicals that were responsible for the redox reaction. A second line with g-factor values of 1.9790, only observed for the samples after contact with Cr(VI) solutions at different pH values, was assigned to Cr(III)-Cr(III) exchange coupled pairs, which explained the capacity of the adsorbent to retain a large portion of the Cr(III) ions produced after reduction of Cr(VI) to Cr(III). Fixed-bed column experiments showed that the termite nest had a maximum adsorption capacity of 18.60 mg Cr g(-1), an adsorption efficiency varying between 60.8 and 97.4%, and a desorption efficiency varying between 54.5 and 91.4%, for three successive cycles. The adsorbent presented excellent performance in the removal of chromium under acidic conditions, with the advantage that it could be regenerated and reused.


Subject(s)
Chromium/chemistry , Environmental Restoration and Remediation/methods , Isoptera , Water Pollutants, Chemical/chemistry , Water Pollution, Chemical/prevention & control , Adsorption , Animals , Electron Spin Resonance Spectroscopy , Gas Chromatography-Mass Spectrometry , Nesting Behavior , Spectroscopy, Fourier Transform Infrared
3.
J Hazard Mater ; 209-210: 9-17, 2012 Mar 30.
Article in English | MEDLINE | ID: mdl-22321857

ABSTRACT

The objective of the present work was to develop a thermal desorption method for the removal of trihalomethanes (THM) adsorbed by humin, followed by multiple recycling of the fixed bed column in order to avoid excessive consumption of materials and reduce operating costs. The results obtained for adsorption on a fixed bed column confirmed the effectiveness of humin as an adsorbent, extracting between 45.9% and 90.1% of the total THM (TTHM). In none of the tests was the column fully saturated after 10h. Experiments involving thermal desorption were used to evaluate the potential of the technique for column regeneration. The adsorptive capacity of the humin bed increased significantly (p<0.05) between the first and fifth desorption cycle, by 18.9%, 18.1%, 24.2%, 20.2% and 24.2% for CHBr(3), CHBr(2)Cl, CHBrCl(2), CHCl(3) and TTHM, respectively.


Subject(s)
Environmental Restoration and Remediation/methods , Humic Substances , Trihalomethanes/chemistry , Adsorption , Spectroscopy, Fourier Transform Infrared
4.
Bioresour Technol ; 105: 31-9, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22178487

ABSTRACT

This work investigates the potentials of peat and angico hardwood sawdust to remove BTEX (benzene, toluene, ethylbenzene, and isomers of xylene) from the produced water discharged into aquatic systems during petroleum extraction. Peat and angico sawdust samples were pyrolyzed at 500°C, and found to contain n-alkenes, n-alkanes and pentacyclic triterpenes (peat), and 4-methoxyphenol, 1,4-dimethoxyphenol and 1,3,4-trimethoxyphenol (angico sawdust). In batch experiments, the removal capacities using peat were 32.4%, 50.0%, 63.0%, 67.8%, and 61.8% for benzene, toluene, ethylbenzene, m,p-xylenes and o-xylene, respectively. This compared with removal capacities using angico sawdust of 20.2%, 36.4%, 52.8%, 57.8%, and 53.7% for these compounds respectively, demonstrating the superior performance of the peat.


Subject(s)
Biodegradation, Environmental , Biomass , Biotechnology/methods , Petroleum , Water Purification/methods , Adsorption , Benzene/chemistry , Benzene Derivatives/chemistry , Chromatography, Gas/methods , Industry , Magnetic Resonance Spectroscopy/methods , Soil , Solvents/chemistry , Temperature , Toluene/chemistry , Xylenes/chemistry
5.
Bioresour Technol ; 101(10): 3345-54, 2010 May.
Article in English | MEDLINE | ID: mdl-20093024

ABSTRACT

The objective of the present work was to assess the performance of batch and fixed bed column systems, using humin in natura and immobilized on sodium silicate, respectively, for the adsorption of the principal trihalomethanes (THMs) found in water supply systems. Kinetically, adsorption of THMs by humin follows a pseudo-second order reaction, with more than 50% removal in the first 5min for all compounds studied, and equilibrium described by the Freundlich model reached in 240min. The THM adsorption results were significant at p<0.05 for both batch (74.6-83.2% removal) and column (99.7% removal in optimized tests) experiments, and were significantly (p<0.05) influenced by flow rate and bed height. The work demonstrates the potential of humin for removal of THMs.


Subject(s)
Halogens/chemistry , Humic Substances , Methane/chemistry , Adsorption , Kinetics
6.
J Hazard Mater ; 163(2-3): 517-23, 2009 Apr 30.
Article in English | MEDLINE | ID: mdl-18722053

ABSTRACT

The physicochemical characteristics of three Brazilian peats were investigated using elemental analysis, scanning electron microscopy (SEM), X-ray diffractometry (XRD) and studies of Cr(III) biosorption based on adsorption isotherms. Adsorption of Cr(III) by in natura peat from Santo Amaro das Brotas (Sergipe State) was much greater than by peats from either Ribeirão Preto (São Paulo State) or Itabaiana (Sergipe State), with adsorption capacities (q) of 4.90+/-0.01, 1.70+/-0.01 and 1.40+/-0.01 mg g(-1), respectively. Pre-treatments with HCl and NaOH+HCl reduced adsorption by the Santo Amaro das Brotas peat, showing that adsorption efficiency was associated with the amount of organic matter present. Conversely, increase in the mineral content following pre-treatment increased adsorption of Cr(III) by the Ribeirão Preto and Itabaiana peats. Highest adsorption (retention >95.0%) was achieved at equilibrium pH 4.0 using the Santo Amaro das Brotas peat. Experimental data for the adsorption of Cr(III) from aqueous solution onto this peat were fitted to the Langmuir equation, from which an equilibrium adsorption capacity, q(max), of 5.60 mg g(-1) was obtained, which was close to the experimentally determined value.


Subject(s)
Chromium/isolation & purification , Soil/standards , Water Pollutants, Chemical/isolation & purification , Adsorption , Industrial Waste , Water Purification/methods
7.
Anal Bioanal Chem ; 375(8): 1097-100, 2003 Apr.
Article in English | MEDLINE | ID: mdl-12733022

ABSTRACT

In this work the copper(II) complexation parameters of aquatic organic matter, aquatic and soil humic substances from Brazilian were determined using a new versatile approach based on a single-stage tangential-flow ultrafiltration (TF-UF) technique (cut-off 1 kDa) and sensitive atomic spectrometry methods. The results regarding the copper(II) complexation capacity and conditional stability constants obtained for humic materials were compared with those obtained using direct potentiometry with a copper-ion-selective electrode. The analytical procedure based on ultrafiltration is a good alternative to determine the complexation parameters in natural organic material from aquatic and soil systems. This approach presents additional advantages such as better sensibility, applicability for multi-element capability, and its possible to be used under natural conditions when compared with the traditional ion-selective electrode.


Subject(s)
Soil/analysis , Ultrafiltration/methods , Water/chemistry , Brazil , Copper/chemistry , Ions
SELECTION OF CITATIONS
SEARCH DETAIL
...