Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
1.
EMBO J ; 42(20): e110844, 2023 10 16.
Article in English | MEDLINE | ID: mdl-37661798

ABSTRACT

Homologous recombination (HR) is a prominent DNA repair pathway maintaining genome integrity. Mutations in many HR genes lead to cancer predisposition. Paradoxically, the implication of the pivotal HR factor RAD51 on cancer development remains puzzling. Particularly, no RAD51 mouse models are available to address the role of RAD51 in aging and carcinogenesis in vivo. We engineered a mouse model with an inducible dominant-negative form of RAD51 (SMRad51) that suppresses RAD51-mediated HR without stimulating alternative mutagenic repair pathways. We found that in vivo expression of SMRad51 led to replicative stress, systemic inflammation, progenitor exhaustion, premature aging and reduced lifespan, but did not trigger tumorigenesis. Expressing SMRAD51 in a breast cancer predisposition mouse model (PyMT) decreased the number and the size of tumors, revealing an anti-tumor activity of SMRAD51. We propose that these in vivo phenotypes result from chronic endogenous replication stress caused by HR decrease, which preferentially targets progenitors and tumor cells. Our work underlines the importance of RAD51 activity for progenitor cell homeostasis, preventing aging and more generally for the balance between cancer and aging.


Subject(s)
Neoplasms , Rad51 Recombinase , Animals , Mice , Aging/genetics , Carcinogenesis/genetics , Cell Transformation, Neoplastic , DNA Damage , DNA Repair , Homologous Recombination , Rad51 Recombinase/genetics , Rad51 Recombinase/metabolism
2.
Stem Cell Res Ther ; 14(1): 201, 2023 08 11.
Article in English | MEDLINE | ID: mdl-37568164

ABSTRACT

BACKGROUND: Human multilineage-differentiating stress enduring (Muse) cells are nontumorigenic endogenous pluripotent-like stem cells that can be easily obtained from various adult or fetal tissues. Regenerative effects of Muse cells have been shown in some disease models. Muse cells specifically home in damaged tissues where they exert pleiotropic effects. Exposition of the small intestine to high doses of irradiation (IR) delivered after radiotherapy or nuclear accident results in a lethal gastrointestinal syndrome (GIS) characterized by acute loss of intestinal stem cells, impaired epithelial regeneration and subsequent loss of the mucosal barrier resulting in sepsis and death. To date, there is no effective medical treatment for GIS. Here, we investigate whether Muse cells can prevent lethal GIS and study how they act on intestinal stem cell microenvironment to promote intestinal regeneration. METHODS: Human Muse cells from Wharton's jelly matrix of umbilical cord (WJ-Muse) were sorted by flow cytometry using the SSEA-3 marker, characterized and compared to bone-marrow derived Muse cells (BM-Muse). Under gas anesthesia, GIS mice were treated or not through an intravenous retro-orbital injection of 50,000 WJ-Muse, freshly isolated or cryopreserved, shortly after an 18 Gy-abdominal IR. No immunosuppressant was delivered to the mice. Mice were euthanized either 24 h post-IR to assess early small intestine tissue response, or 7 days post-IR to assess any regenerative response. Mouse survival, histological stainings, apoptosis and cell proliferation were studied and measurement of cytokines, recruitment of immune cells and barrier functional assay were performed. RESULTS: Injection of WJ-Muse shortly after abdominal IR highly improved mouse survival as a result of a rapid regeneration of intestinal epithelium with the rescue of the impaired epithelial barrier. In small intestine of Muse-treated mice, an early enhanced secretion of IL-6 and MCP-1 cytokines was observed associated with (1) recruitment of monocytes/M2-like macrophages and (2) proliferation of Paneth cells through activation of the IL-6/Stat3 pathway. CONCLUSION: Our findings indicate that a single injection of a small quantity of WJ-Muse may be a new and easy therapeutic strategy for treating lethal GIS.


Subject(s)
Alprostadil , Mesenchymal Stem Cells , Adult , Mice , Humans , Animals , Cell Differentiation/physiology , Alprostadil/metabolism , Mesenchymal Stem Cells/metabolism , Interleukin-6/metabolism , Intestines
3.
J Invest Dermatol ; 143(1): 105-114.e12, 2023 01.
Article in English | MEDLINE | ID: mdl-36007550

ABSTRACT

Deciphering the pathways that regulate human epidermal precursor cell fate is necessary for future developments in skin repair and graft bioengineering. Among them, characterization of pathways regulating the keratinocyte (KC) precursor immaturity versus differentiation balance is required for improving the efficiency of KC precursor ex vivo expansion. In this study, we show that the transcription factor MXD4/MAD4 is expressed at a higher level in quiescent KC stem/progenitor cells located in the basal layer of human epidermis than in cycling progenitors. In holoclone KCs, stable short hairpin-RNA‒mediated decreased expression of MXD4/MAD4 increases MYC expression, whose modulation increases the proliferation of KC precursors and maintenance of their clonogenic potential and preserves the functionality of these precursors in three-dimensional epidermis organoid generation. Altogether, these results characterize MXD4/MAD4 as a major piece of the stemness puzzle in the human epidermis KC lineage and pinpoint an original avenue for ex vivo expansion of human KC precursors.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors , Epidermal Cells , Keratinocytes , Humans , Cell Differentiation , Epidermis/metabolism , Keratinocytes/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism
4.
Blood Cancer Discov ; 3(4): 285-297, 2022 07 06.
Article in English | MEDLINE | ID: mdl-35290450

ABSTRACT

Current murine models of myeloproliferative neoplasms (MPNs) cannot examine how MPNs progress from a single bone marrow source to the entire hematopoietic system. Thus, using transplantation of knock-in JAK2V617F hematopoietic cells into a single irradiated leg, we show development of polycythemia vera (PV) from a single anatomic site in immunocompetent mice. Barcode experiments reveal that grafted JAK2V617F stem/progenitor cells migrate from the irradiated leg to nonirradiated organs such as the contralateral leg and spleen, which is strictly required for development of PV. Mutant cells colonizing the nonirradiated leg efficiently induce PV in nonconditioned recipient mice and contain JAK2V617F hematopoietic stem/progenitor cells that express high levels of carbonic anhydrase 1 (CA1), a peculiar feature also found in CD34+ cells from patients with PV. Finally, genetic and pharmacologic inhibition of CA1 efficiently suppresses PV development and progression in mice and decreases PV patients' erythroid progenitors, strengthening CA1 as a potent therapeutic target for PV. SIGNIFICANCE: Follow-up of hematopoietic malignancies from their initiating anatomic site is crucial for understanding their development and discovering new therapeutic avenues. We developed such an approach, used it to characterize PV progression, and identified CA1 as a promising therapeutic target of PV. This article is highlighted in the In This Issue feature, p. 265.


Subject(s)
Carbonic Anhydrases , Hematologic Neoplasms , Polycythemia Vera , Animals , Hematologic Neoplasms/pathology , Hematopoietic Stem Cells , Janus Kinase 2/genetics , Mice , Polycythemia Vera/drug therapy
5.
Blood Adv ; 6(6): 1766-1779, 2022 03 22.
Article in English | MEDLINE | ID: mdl-35100346

ABSTRACT

Bone marrow (BM) resident macrophages interact with a population of long-term hematopoietic stem cells (LT-HSCs) but their role on LT-HSC properties after stress is not well defined. Here, we show that a 2 Gy-total body irradiation (TBI)-mediated death of LT-HSCs is associated with increased percentages of LT-HSCs with reactive oxygen species (ROS) and of BM resident macrophages producing nitric oxide (NO), resulting in an increased percentage of LT-HSCs with endogenous cytotoxic peroxynitrites. Pharmacological or genetic depletion of BM resident macrophages impairs the radio-induced increases in the percentage of both ROS+ LT-HSCs and peroxynitrite+ LT-HSCs and results in a complete recovery of a functional pool of LT-HSCs. Finally, we show that after a 2 Gy-TBI, a specific decrease of NO production by BM resident macrophages improves the LT-HSC recovery, whereas an exogenous NO delivery decreases the LT-HSC compartment. Altogether, these results show that BM resident macrophages are involved in the response of LT-HSCs to a 2 Gy-TBI and suggest that regulation of NO production can be used to modulate some deleterious effects of a TBI on LT-HSCs.


Subject(s)
Bone Marrow , Whole-Body Irradiation , Hematopoietic Stem Cells , Macrophages , Reactive Oxygen Species , Whole-Body Irradiation/adverse effects
6.
Oncogene ; 40(19): 3460-3469, 2021 05.
Article in English | MEDLINE | ID: mdl-33767435

ABSTRACT

In solid cancers, high expression of the cellular prion protein (PrPC) is associated with stemness, invasiveness, and resistance to chemotherapy, but the role of PrPC in tumor response to radiotherapy is unknown. Here, we show that, in neuroblastoma, breast, and colorectal cancer cell lines, PrPC expression is increased after ionizing radiation (IR) and that PrPC deficiency increases radiation sensitivity and decreases radiation-induced radioresistance in tumor cells. In neuroblastoma cells, IR activates ATM that triggers TAK1-dependent phosphorylation of JNK and subsequent activation of the AP-1 transcription factor that ultimately increases PRNP promoter transcriptional activity through an AP-1 binding site in the PRNP promoter. Importantly, we show that this ATM-TAK1-PrPC pathway mediated radioresistance is activated in all tumor cell lines studied and that pharmacological inhibition of TAK1 activity recapitulates the effects of PrPC deficiency. Altogether, these results unveil how tumor cells activate PRNP to acquire resistance to radiotherapy and might have implications for therapeutic targeting of solid tumors radioresistance.


Subject(s)
Ataxia Telangiectasia Mutated Proteins/metabolism , MAP Kinase Kinase Kinases/metabolism , Neoplasms/metabolism , Neoplasms/radiotherapy , PrPC Proteins/biosynthesis , Cell Line, Tumor , Humans , Neoplasms/genetics , PrPC Proteins/metabolism , Radiation Tolerance
8.
Int J Radiat Oncol Biol Phys ; 109(3): 819-829, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33075474

ABSTRACT

PURPOSE: Ultra-high-dose-rate FLASH radiation therapy has been shown to minimize side effects of irradiation in various organs while keeping antitumor efficacy. This property, called the FLASH effect, has caused enthusiasm in the radiation oncology community because it opens opportunities for safe dose escalation and improved radiation therapy outcome. Here, we investigated the impact of ultra-high-dose-rate FLASH versus conventional-dose-rate (CONV) total body irradiation (TBI) on humanized models of T-cell acute lymphoblastic leukemia (T-ALL) and normal human hematopoiesis. METHODS AND MATERIALS: We optimized the geometry of irradiation to ensure reproducible and homogeneous procedures using eRT6/Oriatron. Three T-ALL patient-derived xenografts and hematopoietic stem/progenitor cells (HSPCs) and CD34+ cells isolated from umbilical cord blood were transplanted into immunocompromised mice, together or separately. After reconstitution, mice received 4 Gy FLASH and CONV-TBI, and tumor growth and normal hematopoiesis were studied. A retrospective study of clinical and gene-profiling data previously obtained on the 3 T-ALL patient-derived xenografts was performed. RESULTS: FLASH-TBI was more efficient than CONV-TBI in controlling the propagation of 2 cases of T-ALL, whereas the third case of T-ALL was more responsive to CONV-TBI. The 2 FLASH-sensitive cases of T-ALL had similar genetic abnormalities, and a putative susceptibility imprint to FLASH-RT was found. In addition, FLASH-TBI was able to preserve some HSPC/CD34+ cell potential. Interestingly, when HSPC and T-ALL were present in the same animals, FLASH-TBI could control tumor development in most (3 of 4) of the secondary grafted animals, whereas among the mice receiving CONV-TBI, treated cells died with high leukemia infiltration. CONCLUSIONS: Compared with CONV-TBI, FLASH-TBI reduced functional damage to human blood stem cells and had a therapeutic effect on human T-ALL with a common genetic and genomic profile. The validity of the defined susceptibility imprint needs to be investigated further; however, to our knowledge, the present findings are the first to show benefits of FLASH-TBI on human hematopoiesis and leukemia treatment.


Subject(s)
Hematopoiesis/radiation effects , Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells/radiation effects , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/radiotherapy , Whole-Body Irradiation/methods , Animals , Genetic Profile , Humans , Immunocompromised Host , Mice , Organs at Risk/radiation effects , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Radiation Injuries/prevention & control , Radiation Tolerance , Radiotherapy Dosage , Reproducibility of Results , Xenograft Model Antitumor Assays
9.
PLoS Genet ; 16(11): e1009090, 2020 11.
Article in English | MEDLINE | ID: mdl-33147208

ABSTRACT

Interferon ß (IFN-ß) is a cytokine that induces a global antiviral proteome, and regulates the adaptive immune response to infections and tumors. Its effects strongly depend on its level and timing of expression. Therefore, the transcription of its coding gene IFNB1 is strictly controlled. We have previously shown that in mice, the TRIM33 protein restrains Ifnb1 transcription in activated myeloid cells through an upstream inhibitory sequence called ICE. Here, we show that the deregulation of Ifnb1 expression observed in murine Trim33-/- macrophages correlates with abnormal looping of both ICE and the Ifnb1 gene to a 100 kb downstream region overlapping the Ptplad2/Hacd4 gene. This region is a predicted myeloid super-enhancer in which we could characterize 3 myeloid-specific active enhancers, one of which (E5) increases the response of the Ifnb1 promoter to activation. In humans, the orthologous region contains several single nucleotide polymorphisms (SNPs) known to be associated with decreased expression of IFNB1 in activated monocytes, and loops to the IFNB1 gene. The strongest association is found for the rs12553564 SNP, located in the E5 orthologous region. The minor allele of rs12553564 disrupts a conserved C/EBP-ß binding motif, prevents binding of C/EBP-ß, and abolishes the activation-induced enhancer activity of E5. Altogether, these results establish a link between a genetic variant preventing binding of a transcription factor and a higher order phenotype, and suggest that the frequent minor allele (around 30% worldwide) might be associated with phenotypes regulated by IFN-ß expression in myeloid cells.


Subject(s)
CCAAT-Enhancer-Binding Protein-beta/metabolism , Enhancer Elements, Genetic , Gene Expression Regulation/immunology , Interferon-beta/genetics , Myeloid Cells/metabolism , Alleles , Animals , Blood Buffy Coat/cytology , Cells, Cultured , Humans , Interferon-beta/immunology , Lipopolysaccharides/immunology , Mice , Mice, Knockout , Myeloid Cells/immunology , Point Mutation , Polymorphism, Single Nucleotide , Primary Cell Culture , Promoter Regions, Genetic , Quantitative Trait Loci , Transcription Factors/genetics , Transcription Factors/metabolism
10.
Radiother Oncol ; 150: 253-261, 2020 09.
Article in English | MEDLINE | ID: mdl-32717360

ABSTRACT

BACKGROUND AND PURPOSE: High-grade chondrosarcomas are chemo- and radio-resistant cartilage-forming tumors of bone that often relapse and metastase. Thus, new therapeutic strategies are urgently needed. MATERIAL AND METHODS: Chondrosarcoma cells (CH-2879) were exposed to carbon-ion irradiation, combined with miR-34 mimic and/or rapamycin administration. The effects of treatment on cancer stem cells, stemness-associated phenotype, radioresistance and tumor-initiating properties were evaluated. RESULTS: We show that high-grade chondrosarcoma cells contain a population of radioresistant cancer stem cells that can be targeted by a combination of carbon-ion therapy, miR-34 mimic administration and/or rapamycin treatment that triggers FOXO3 and miR-34 over-expression. mTOR inhibition by rapamycin triggered FOXO3 and miR-34, leading to KLF4 repression. CONCLUSION: Our results show that particle therapy combined with molecular treatments effectively controls cancer stem cells and may overcome treatment resistance of high-grade chondrosarcoma.


Subject(s)
Bone Neoplasms , Chondrosarcoma , MicroRNAs , Bone Neoplasms/radiotherapy , Carbon , Cell Line, Tumor , Chondrosarcoma/genetics , Chondrosarcoma/therapy , Combined Modality Therapy , Humans , Ions , Kruppel-Like Factor 4 , MicroRNAs/genetics , Neoplasm Recurrence, Local , Neoplastic Stem Cells , TOR Serine-Threonine Kinases
11.
Sci Adv ; 6(12): eaay3704, 2020 03.
Article in English | MEDLINE | ID: mdl-32219160

ABSTRACT

Human and murine skin wounding commonly results in fibrotic scarring, but the murine wounding model wound-induced hair neogenesis (WIHN) can frequently result in a regenerative repair response. Here, we show in single-cell RNA sequencing comparisons of semi-regenerative and fibrotic WIHN wounds, increased expression of phagocytic/lysosomal genes in macrophages associated with predominance of fibrotic myofibroblasts in fibrotic wounds. Investigation revealed that macrophages in the late wound drive fibrosis by phagocytizing dermal Wnt inhibitor SFRP4 to establish persistent Wnt activity. In accordance, phagocytosis abrogation resulted in transient Wnt activity and a more regenerative healing. Phagocytosis of SFRP4 was integrin-mediated and dependent on the interaction of SFRP4 with the EDA splice variant of fibronectin. In the human skin condition hidradenitis suppurativa, phagocytosis of SFRP4 by macrophages correlated with fibrotic wound repair. These results reveal that macrophages can modulate a key signaling pathway via phagocytosis to alter the skin wound healing fate.


Subject(s)
Macrophages/immunology , Macrophages/metabolism , Phagocytosis/immunology , Proto-Oncogene Proteins/metabolism , Wnt Proteins/metabolism , Wnt Signaling Pathway , Wound Healing , Fibroblasts/metabolism , Fibrosis , Humans , Proteolysis , Skin/immunology , Skin/injuries , Skin/metabolism , Wound Healing/immunology
12.
Nature ; 577(7792): E10, 2020 01.
Article in English | MEDLINE | ID: mdl-31911658

ABSTRACT

An Amendment to this paper has been published and can be accessed via a link at the top of the paper.

13.
Haematologica ; 105(5): 1216-1222, 2020 05.
Article in English | MEDLINE | ID: mdl-31371412

ABSTRACT

Highly conserved among species and expressed in various types of cells, numerous roles have been attributed to the cellular prion protein (PrPC). In hematopoiesis, PrPC regulates hematopoietic stem cell self-renewal but the mechanisms involved in this regulation are unknown. Here we show that PrPC regulates hematopoietic stem cell number during aging and their determination towards myeloid progenitors. Furthermore, PrPC protects myeloid progenitors against the cytotoxic effects of total body irradiation. This radioprotective effect was associated with increased cellular prion mRNA level and with stimulation of the DNA repair activity of the Apurinic/pyrimidinic endonuclease 1, a key enzyme of the base excision repair pathway. Altogether, these results show a previously unappreciated role of PrPC in adult hematopoiesis, and indicate that PrPC-mediated stimulation of BER activity might protect hematopoietic progenitors from the cytotoxic effects of total body irradiation.


Subject(s)
Prions , Protein Deficiency , Hematopoietic Stem Cells , Humans , Myeloid Progenitor Cells , Prion Proteins/genetics , Prions/genetics
14.
Int J Radiat Oncol Biol Phys ; 108(1): 314-325, 2020 09 01.
Article in English | MEDLINE | ID: mdl-31689464

ABSTRACT

PURPOSE: This study addresses the sensitivity of different peripheral CD4+ T-lymphocyte subsets to irradiation (IR) and identifies potential targets for the prevention or treatment of radiation-induced toxicity. METHODS: This study was performed on peripheral blood mononuclear cells or sorted peripheral memory lymphocytes of CCR6+ mucosa-homing Th17/CCR6negTh and regulatory T subtypes of healthy volunteers. Cells were irradiated with a 2 Gy with or without pharmacologic inhibitors of different signaling pathways. Senescence of irradiated cells was assessed by resistance to apoptosis and determination of various senescence-associated biomarkers (senescence associated b-galactosidase activity, p16Ink4a-, p21Cdkn1a-, gH2A.X-, H2A.J expression). Cytokine production was measured in supernatants of irradiated cells by Luminex technology. RESULTS: Not all CD4+ memory T lymphocyte subsets were equally radiosensitive. High sensitivity of CCR6+Th17 lymphocytes to IR-induced senescence was shown by expression of the histone variant H2A.J, higher SA-b-Gal activity, and upregulation of p16Ink4a and p21Cdkn1a expression. Lower Annexin V staining and cleaved caspase-3, and higher expression of antiapoptotic genes Bcl-2 and Bcl-xL LF, showed that CCR6+Th17 lymphocytes were more resistant to IR-induced apoptosis than CCR6neg memory Th and regulatory T lymphocytes. After a 2 Gy IR, both CCR6+Th17 and CCR6neg cells acquired a moderate senescence-associated secretory phenotype, but only CCR6+Th17 cells secreted interleukin 8 (IL-8) and vascular endothelial growth factor-A (VEGF-A). Pharmacologic targeting of reactive oxygen species (ROS), mitogen-activated protein kinases (MAPKs), and mammalian target of rapamycin (mTOR) signaling pathways prevented the expression of senescent markers and IL-8 and VEGF-A expression by CCR6+Th17 cells after IR. CONCLUSIONS: This study suggests that IR induces senescence of CCR6+Th17 lymphocytes associated with secretion of IL-8 and VEGF-A that may be detrimental to the irradiated tissue. ROS-MAPKs signaling pathways are candidate targets to prevent this CCR6+Th17-dependent radiation-induced potential toxicity. Finally, the ratio of circulating H2A.J+ senescent CCR6+ Th17/CD4+ T lymphocytes may be a candidate marker of individual intrinsic radiosensitivity.


Subject(s)
Cellular Senescence/radiation effects , Radiation Injuries/prevention & control , Receptors, CCR6/metabolism , Th17 Cells/cytology , Th17 Cells/radiation effects , Cellular Senescence/drug effects , Cellular Senescence/immunology , Humans , Molecular Targeted Therapy , Radiation Injuries/immunology , Safety , Signal Transduction/drug effects , Signal Transduction/immunology , Signal Transduction/radiation effects , Th17 Cells/drug effects , Th17 Cells/immunology
15.
Nat Biomed Eng ; 3(12): 985-997, 2019 12.
Article in English | MEDLINE | ID: mdl-31636412

ABSTRACT

Expanded autologous skin keratinocytes are currently used in cutaneous cell therapy, and embryonic-stem-cell-derived keratinocytes could become a complementary alternative. Regardless of keratinocyte provenance, for efficient therapy it is necessary to preserve immature keratinocyte precursors during cell expansion and graft processing. Here, we show that stable and transient downregulation of the transcription factor Krüppel-like factor 4 (KLF4) in keratinocyte precursors from adult skin, using anti-KLF4 RNA interference or kenpaullone, promotes keratinocyte immaturity and keratinocyte self-renewal in vitro, and enhances the capacity for epidermal regeneration in mice. Both stable and transient KLF4 downregulation had no impact on the genomic integrity of adult keratinocytes. Moreover, transient KLF4 downregulation in human-embryonic-stem-cell-derived keratinocytes increased the efficiency of skin-orientated differentiation and of keratinocyte immaturity, and was associated with improved generation of epidermis. As a regulator of the cell fate of keratinocyte precursors, KLF4 could be used for promoting the ex vivo expansion and maintenance of functional immature keratinocyte precursors.


Subject(s)
Keratinocytes/immunology , Keratinocytes/metabolism , Kruppel-Like Transcription Factors/metabolism , Skin/metabolism , Adult , Animals , Cell Differentiation , Down-Regulation , Epidermal Cells/metabolism , Epidermal Cells/pathology , Gene Expression Regulation , Gene Knockout Techniques , Heterografts , Humans , Keratinocytes/pathology , Kruppel-Like Factor 4 , Kruppel-Like Transcription Factors/genetics , Mice , Mice, Nude , Skin/pathology , Stem Cells
16.
Epigenetics Chromatin ; 12(1): 46, 2019 07 22.
Article in English | MEDLINE | ID: mdl-31331374

ABSTRACT

BACKGROUND: Cell type-specific use of cis-acting regulatory elements is mediated by the combinatorial activity of transcription factors involved in lineage determination and maintenance of cell identity. In macrophages, specific transcriptional programs are dictated by the transcription factor PU.1 that primes distal regulatory elements for macrophage identities and makes chromatin competent for activity of stimuli-dependent transcription factors. Although the advances in genome-wide approaches have elucidated the functions of these macrophage-specific distal regulatory elements in transcriptional responses, chromatin structures associated with PU.1 priming and the underlying mechanisms of action of these cis-acting sequences are not characterized. RESULTS: Here, we show that, in macrophages, FACT subunit SPT16 can bind to positioned nucleosomes directly flanking PU.1-bound sites at previously uncharacterized distal regulatory elements located near genes essential for macrophage development and functions. SPT16 can interact with the transcriptional co-regulator TRIM33 and binds to half of these sites in a TRIM33-dependent manner. Using the Atp1b3 locus as a model, we show that FACT binds to two positioned nucleosomes surrounding a TRIM33/PU.1-bound site in a region, located 35 kb upstream the Atp1b3 TSS, that interact with the Atp1b3 promoter. At this - 35 kb region, TRIM33 deficiency leads to FACT release, loss of the two positioned nucleosomes, RNA Pol II recruitment and bidirectional transcription. These modifications are associated with higher levels of FACT binding at the Atp1b3 promoter, an increase of RNA Pol II recruitment and an increased expression of Atp1b3 in Trim33-/- macrophages. CONCLUSIONS: Thus, sequestering of SPT16/FACT by TRIM33 at PU.1-bound distal regions might represent a new regulatory mechanism for RNA Pol II recruitment and transcription output in macrophages.


Subject(s)
Chromatin Assembly and Disassembly , Transcription Factors/metabolism , Transcriptional Elongation Factors/metabolism , Animals , Binding Sites , Histones/metabolism , Macrophages/cytology , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Nucleosomes/metabolism , Promoter Regions, Genetic , Protein Binding , RNA Polymerase II/metabolism , Regulatory Sequences, Nucleic Acid , Sodium-Potassium-Exchanging ATPase/genetics , Transcription Factors/deficiency , Transcription Factors/genetics , Transcription, Genetic
17.
EBioMedicine ; 44: 60-70, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31130476

ABSTRACT

BACKGROUND: Mature myeloid cells play a crucial role in Crohn's disease (CD) but the molecular players that regulate their functions in CD are not fully characterized. We and others have shown that TRIM33 is involved in the innate immune response and in the inflammatory response but TRIM33 role in intestinal inflammation is not known. In this study, we investigated the role of TRIM33 in myeloid cells during dextran sulfate sodium (DSS)-induced colitis. METHODS: We study the role of TRIM33 during DSS-induced colitis which mimics intestinal inflammation using mice deleted for Trim33 only in mature myeloid cells (Trim33-/- mice) FINDINGS: We first show that Trim33 mRNA level is decreased in CD patient's blood monocytes suggesting a role of TRIM33 in CD. Using Trim33-/- mice, we show that these mice display an impaired resolution of colonic inflammation with an increased number of blood and colon monocytes and a decreased number of colonic macrophages. Trim33-/- monocytes are less competent for recruitment and macrophage differentiation. Finally, during resolution of inflammation, Trim33-/- colonic macrophages display an impaired M1/M2 switch and express a low level of membrane-bound TNF that is associated with an increased number of colonic neutrophils. INTERPRETATION: Our study shows an important role of TRIM33 in monocytes/macrophages during DSS-induced colitis and suggests that the decreased expression of TRIM33 in CD patient's blood monocytes might not be a consequence but might be involved in CD progression. FUND: La Ligue contre le Cancer (équipe labelisée), INSERM, CEA, Université Paris-Diderot, Université Paris-Sud.


Subject(s)
Colitis/etiology , Macrophages/metabolism , Monocytes/metabolism , Transcription Factors/deficiency , Animals , Biomarkers , Colitis/metabolism , Colitis/pathology , Crohn Disease/etiology , Crohn Disease/metabolism , Crohn Disease/pathology , Cytokines/genetics , Cytokines/metabolism , Disease Models, Animal , Gene Expression , Humans , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Macrophage Activation/genetics , Macrophage Activation/immunology , Macrophages/immunology , Mice , Mice, Knockout , Monocytes/immunology , Myeloid Cells/immunology , Myeloid Cells/metabolism , RNA, Messenger
18.
Nature ; 569(7758): 672-678, 2019 05.
Article in English | MEDLINE | ID: mdl-31092925

ABSTRACT

Autonomic nerve fibres in the tumour microenvironment regulate cancer initiation and dissemination, but how nerves emerge in tumours is currently unknown. Here we show that neural progenitors from the central nervous system that express doublecortin (DCX+) infiltrate prostate tumours and metastases, in which they initiate neurogenesis. In mouse models of prostate cancer, oscillations of DCX+ neural progenitors in the subventricular zone-a neurogenic area of the central nervous system-are associated with disruption of the blood-brain barrier, and with the egress of DCX+ cells into the circulation. These cells then infiltrate and reside in the tumour, and can generate new adrenergic neurons. Selective genetic depletion of DCX+ cells inhibits the early phases of tumour development in our mouse models of prostate cancer, whereas transplantation of DCX+ neural progenitors promotes tumour growth and metastasis. In humans, the density of DCX+ neural progenitors is strongly associated with the aggressiveness and recurrence of prostate adenocarcinoma. These results reveal a unique crosstalk between the central nervous system and prostate tumours, and indicate neural targets for the treatment of cancer.


Subject(s)
Central Nervous System/pathology , Neural Stem Cells/pathology , Neurogenesis , Prostatic Neoplasms/pathology , Adenocarcinoma/pathology , Adrenergic Neurons/pathology , Animals , Carcinogenesis , Cell Differentiation , Disease Models, Animal , Doublecortin Domain Proteins , Doublecortin Protein , Genes, myc , Humans , Lateral Ventricles/pathology , Male , Mice , Microtubule-Associated Proteins/metabolism , Neural Stem Cells/metabolism , Neuropeptides/metabolism , Olfactory Bulb/pathology , Prognosis
19.
Int J Radiat Biol ; 95(7): 892-899, 2019 07.
Article in English | MEDLINE | ID: mdl-30652952

ABSTRACT

Studies of the responses of hematopoietic stem and progenitor cells (HSPCs) to low doses of ionizing radiation formed an important aspect of the RISK-IR project ( www.risk-ir.eu ). A brief overview of these studies is presented here. The findings confirm the sensitivity of HSPCs to radiation even at low doses, and illustrate the substantial impact that differentiation state has upon cell sensitivity. The work provides mechanistic support for epidemiological findings of leukemia risk at dose levels used in diagnostic CT imaging, and further suggests that low-dose irradiation may facilitate bone marrow transplantation, a finding that could lead to refinements in clinical practice.


Subject(s)
Hematopoietic Stem Cells/cytology , Leukemia/etiology , Leukemia/radiotherapy , Radiation Dosage , Radiation, Ionizing , Stem Cells/cytology , Animals , Cell Differentiation/radiation effects , Cells, Cultured , Hematopoiesis , Hematopoietic Stem Cell Transplantation , Humans , Mice , Neoplasms, Radiation-Induced , Radiation Tolerance , Tomography, X-Ray Computed
20.
Cell Rep ; 20(13): 3199-3211, 2017 Sep 26.
Article in English | MEDLINE | ID: mdl-28954235

ABSTRACT

Despite numerous observations linking protracted exposure to low-dose (LD) radiation and leukemia occurrence, the effects of LD irradiation on hematopoietic stem cells (HSCs) remain poorly documented. Here, we show that adult HSCs are hypersensitive to LD irradiation. This hyper-radiosensitivity is dependent on an immediate increase in the levels of reactive oxygen species (ROS) that also promotes autophagy and activation of the Keap1/Nrf2 antioxidant pathway. Nrf2 activation initially protects HSCs from the detrimental effects of ROS, but protection is transient, and increased ROS levels return, promoting a long-term decrease in HSC self-renewal. In vivo, LD total body irradiation (TBI) does not decrease HSC numbers unless the HSC microenvironment is altered by an inflammatory insult. Paradoxically, such an insult, in the form of granulocyte colony-stimulating factor (G-CSF) preconditioning, followed by LD-TBI facilitates efficient bone marrow transplantation without myeloablation. Thus, LD irradiation has long-term detrimental effects on HSCs that may result in hematological malignancies, but LD-TBI may open avenues to facilitate autologous bone marrow transplantation.


Subject(s)
Hematopoietic Stem Cells/metabolism , Oxidative Stress/genetics , Whole-Body Irradiation/methods , Animals , Humans , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...