Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Pharm ; 511(1): 669-679, 2016 Sep 10.
Article in English | MEDLINE | ID: mdl-27473279

ABSTRACT

For direct intramacrophagic antitubercular therapy, pulmonary administration through Dry Powder Inhaler (DPI) devices is a reasonable option. For the achievement of efficacious aerosolisation, rifampicin-loaded Solid Lipid Nanoparticle assemblies (SLNas) were developed using the melt emulsifying technique followed by freeze-drying. Indeed, this drying method can cause freezing or drying stresses compromising powder respirability. It is the aim of this research to offer novel information regarding pre-freezing variables. These included type and concentration of cryoprotectants, pre-freezing temperature, and nanoparticle concentration in the suspension. In particular, the effects of such variables were observed at two main levels. First of all, on SLNas characteristics - i.e., size, polydispersity index, zeta-potential, circularity, density, and drug loading. Secondly, on powder respirability, taking into account aerodynamic diameter, emitted dose, and respirable fraction. Considering the complexity of the factors involved in a successful respirable powder, a Design of Experiments (DoE) approach was adopted as a statistical tool for evaluating the effect of pre-freezing conditions. Interestingly, the most favourable impact on powder respirability was exerted by quick-freezing combined with a certain grade of sample dilution before the pre-freezing step without the use of cryoprotectants. In such conditions, a very high SLNas respirable fraction (>50%) was achieved, along with acceptable yields in the final dry powder as well as a reduction of powder mass to be introduced into DPI capsules with benefits in terms of administered drug dose feasibility.


Subject(s)
Antitubercular Agents/chemistry , Dry Powder Inhalers/methods , Lipids/chemistry , Nanoparticles/chemistry , Administration, Inhalation , Antitubercular Agents/administration & dosage , Drug Liberation , Freeze Drying/methods , Lipids/administration & dosage , Nanoparticles/administration & dosage , Powders
2.
Colloids Surf B Biointerfaces ; 122: 653-661, 2014 Oct 01.
Article in English | MEDLINE | ID: mdl-25139292

ABSTRACT

Skin penetration of silica nanoparticles (NP) currently used in pharmaceutical and cosmetic products is a topic of interest not only to evaluate their possible toxicity, but also to understand their behaviour upon contact with the skin and to exploit their potential positive effects in drug or cosmetic delivery field. Therefore, the present work aimed to elucidate the in vivo mechanism by which amorphous hydrophilic silica NP enter human stratum corneum (SC) through the evaluation of the role played by the nanoparticle surface polarity and the human hair follicle density. Two silica samples, bare hydrophilic silica (B-silica, 162±51nm in size) and hydrophobic lipid-coated silica (LC-silica, 363±74nm in size) were applied on both the volar and dorsal side of volunteer forearms. Twelve repetitive stripped tapes were removed from the human skin and evaluated for elemental composition by Energy Dispersive X-ray (EDX) analysis and for silicon content by Inductively Coupled Plasma quadrupole Mass Spectrometry (ICP-MS). All the stripped tapes revealed nanosized structures generally located in the broad spaces between corneocytes and characterized by the same elemental composition (relative weight percentage of silicon and silicon to oxygen weight ratio) than that of the applied samples. However, only about 10% B-silica permeated until the deepest SC layers considered in the study indicating a silica retention in the upper layers of SC, regardless of the hair follicle density. Otherwise, the exposure to LC-silica led to a greater silica skin penetration extent into the deeper SC layers (about 42% and 18% silica following volar and dorsal forearm application, respectively) indicating that the NP surface polarity played a predominant role on that of their size in determining the route and the extent of penetration.


Subject(s)
Lipids/pharmacokinetics , Nanoparticles , Silicon Dioxide/pharmacokinetics , Skin/metabolism , Humans
3.
Int J Pharm ; 447(1-2): 204-12, 2013 Apr 15.
Article in English | MEDLINE | ID: mdl-23500767

ABSTRACT

Lipid-based particulate delivery systems have been extensively investigated in the last decade for both pharmaceutical and cosmetic skin application although their translocation across the skin is not yet clarified. The aim of this paper was to investigate on humans the ability of solid lipid nanoparticles (SLN) and solid lipid microparticles (SLM) to penetrate the outermost stratum corneum (SC) and to be modified upon contact with the cutaneous components by using the Tape Stripping Test coupled with the energy dispersive X-ray (EDX) analysis. SLN and SLM were prepared by the melt emulsification technique and loaded with nanosized titanium dioxide (TiO2) to become identifiable by means of X-ray emission. Following human skin application, the translocation of the particulate systems was monitored by the analysis of twelve repetitive stripped tapes using non-encapsulated metal dioxide as the control. Intact SLN as well as non-encapsulated TiO2 were recorded along the largest SC openings until the 12th stripped tape suggesting the intercluster region as their main pathway. Evidences of a concurrent biodegradation process of the lipid matrix, as the result of SLN interaction with the lipid packing between the corneocyte clusters, were found in the deepest SC layers considered. On the contrary, SLM were retained on the skin surface without undergoing biodegradation so preventing the leaching and the subsequent SC translocation of the loaded TiO2.


Subject(s)
Epidermis/metabolism , Lipids/administration & dosage , Metal Nanoparticles/administration & dosage , Titanium/administration & dosage , Adult , Female , Humans , Lipids/chemistry , Metal Nanoparticles/chemistry , Microscopy, Electron, Scanning , Middle Aged , Skin Absorption , Spectrometry, X-Ray Emission , Titanium/chemistry , Young Adult
4.
J Control Release ; 96(1): 67-84, 2004 Apr 16.
Article in English | MEDLINE | ID: mdl-15063030

ABSTRACT

The crosslinking process of natural macromolecules with microwave energy should have the potentiality to overcome the problems due to the toxicity of the residuals of chemical crosslinking agents and moreover of the "in vivo" biodegradation products of the chemical crosslinked macromolecule. To evaluate the effective crosslinking of the gelatin forming the microspheres, the water-soluble fraction at 37 degrees C, the water absorption capability, the free amino and free carboxylic acid groups of the gelatin were determined. The structural change in the gelatin microspheres has been detected by the porosity studies. Moreover, both the "in vitro" biodegradability and the biocompatibility of the gelatin microspheres microwave-treated after a subcutaneous injection into female albino guinea pigs were tested. As the results suggest only the gelatin microspheres microwave-treated for 10 min at an inlet temperature of 250 degrees C could have been modified by the crosslink formation among the macromolecular chains. The gelatin microspheres treated with the microwave energy were very well biodegraded as indicated both by the "in vitro" enzymatic degradation studies and mainly by the histopathological examination. This latter study has also demonstrated the biocompatibility of the gelatin microspheres crosslinked with the microwave energy. In order to evaluate the feasibility of the microwave crosslinking process for pharmaceutical applications, both the drug loading and the drug release processes were evaluated using diclofenac as drug model, either as acidic form or as sodium salt. The microspheres were swollen in aqueous solution of diclofenac sodium salt, followed by a washing procedure with cool water to maintain the sodium salt into the microspheres or with pH 1.5 HCl to induce the diclofenac precipitation. To increase the amount of diclofenac acid form in the microspheres, the procedure was repeated three times washing with pH 1.5 HCl after each swelling process. Both the X-ray diffractometry and thermal analysis investigations showed a different physical state of the two drug forms in the microspheres, i.e. the amorphous state of the sodium salt and the crystalline state of the acidic form. According to the experimental results, the drug is released from gelatin microspheres according to the drug loading and the drug solubility.


Subject(s)
Drug Delivery Systems/methods , Gelatin/administration & dosage , Gelatin/radiation effects , Microspheres , Microwaves , Animals , Cattle , Female , Gelatin/pharmacokinetics , Guinea Pigs
SELECTION OF CITATIONS
SEARCH DETAIL
...