Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(10): e30740, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38770342

ABSTRACT

Malaria, a major public health burden, is caused by Plasmodium spp parasites that first replicate in the human liver to establish infection before spreading to erythrocytes. Liver-stage malaria research has remained challenging due to the lack of a clinically relevant and scalable in vitro model of the human liver. Here, we demonstrate that organoids derived from intrahepatic ductal cells differentiated into a hepatocyte-like fate can support the infection and intrahepatic maturation of Plasmodium falciparum. The P.falciparum exoerythrocytic forms observed expressed both early and late-stage parasitic proteins and decreased in frequency in response to treatment with both known and putative antimalarial drugs that target intrahepatic P.falciparum. The P.falciparum-infected human liver organoids thus provide a platform not only for fundamental studies that characterise intrahepatic parasite-host interaction but can also serve as a powerful translational tool in pre-erythrocytic vaccine development and to identify new antimalarial drugs that target the liver stage infection.

2.
Cancer Res ; 84(10): 1699-1718, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38535994

ABSTRACT

There is an unmet need to improve the efficacy of platinum-based cancer chemotherapy, which is used in primary and metastatic settings in many cancer types. In bladder cancer, platinum-based chemotherapy leads to better outcomes in a subset of patients when used in the neoadjuvant setting or in combination with immunotherapy for advanced disease. Despite such promising results, extending the benefits of platinum drugs to a greater number of patients is highly desirable. Using the multiomic assessment of cisplatin-responsive and -resistant human bladder cancer cell lines and whole-genome CRISPR screens, we identified puromycin-sensitive aminopeptidase (NPEPPS) as a driver of cisplatin resistance. NPEPPS depletion sensitized resistant bladder cancer cells to cisplatin in vitro and in vivo. Conversely, overexpression of NPEPPS in sensitive cells increased cisplatin resistance. NPEPPS affected treatment response by regulating intracellular cisplatin concentrations. Patient-derived organoids (PDO) generated from bladder cancer samples before and after cisplatin-based treatment, and from patients who did not receive cisplatin, were evaluated for sensitivity to cisplatin, which was concordant with clinical response. In the PDOs, depletion or pharmacologic inhibition of NPEPPS increased cisplatin sensitivity, while NPEPPS overexpression conferred resistance. Our data present NPEPPS as a druggable driver of cisplatin resistance by regulating intracellular cisplatin concentrations. SIGNIFICANCE: Targeting NPEPPS, which induces cisplatin resistance by controlling intracellular drug concentrations, is a potential strategy to improve patient responses to platinum-based therapies and lower treatment-associated toxicities.


Subject(s)
Cisplatin , Drug Resistance, Neoplasm , Urinary Bladder Neoplasms , Humans , Cisplatin/pharmacology , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/pathology , Urinary Bladder Neoplasms/metabolism , Animals , Mice , Cell Line, Tumor , Aminopeptidases/genetics , Aminopeptidases/metabolism , Xenograft Model Antitumor Assays , Antineoplastic Agents/pharmacology , Organoids/drug effects , Organoids/metabolism
3.
Bio Protoc ; 12(8): e4392, 2022 Apr 20.
Article in English | MEDLINE | ID: mdl-35800100

ABSTRACT

The absence of long term, primary untransformed in vitro models that support hepatitis B virus (HBV) infection and replication have hampered HBV pre-clinical research, which was reflected in the absence of a curative therapy until recently. One of the limitations for in vitro HBV research has been the absence of high titer and pure recombinant HBV stocks, which, as we describe here, can be generated using simple, and reproducible protocols. In addition to infection of more conventional in vitro and in vivo liver model systems, recombinant high titer purified HBV stocks can also be used to efficiently infect differentiated human liver organoids, whose generation, maintenance, and infection is discussed in detail in a companion organoid protocol. Here, we also describe the protocols for the detection of specific viral read-outs, including HBV DNA in the supernatant of the cultures, covalently closed circular DNA (cccDNA) from intracellular DNA preparations, and HBV viral proteins and viral RNA, which can be detected within the cells, demonstrating the presence of a complete viral replication cycle in infected liver organoids. Although an evolving platform, the human liver organoid model system presents great potential as an exciting new tool to study HBV infection and progression to hepatocellular carcinoma (HCC) in primary cells, when combined with the use of high-titer and pure recombinant HBV stock for infection. Graphical abstract.

4.
Bio Protoc ; 12(6): e4358, 2022 Mar 20.
Article in English | MEDLINE | ID: mdl-35434190

ABSTRACT

Hepatitis B virus (HBV) infection represents a major public health problem infecting approximately 400 million people worldwide. Despite the availability of a preventive vaccine and anti-viral therapies, chronic HBV infection remains a major health issue because it increases the risk of developing liver cirrhosis and hepatocellular carcinoma (HCC). The lack of a relevant in vitro model for the study of the molecular mechanisms that drive HBV replication and latency, as well as HBV-related carcinogenesis, has been one of the major obstacles to the development of curative strategies. Here, we propose the use of human liver organoids as a platform for modeling HBV infection and related tumorigenesis. Human liver organoids can be seeded from both healthy and cirrhotic liver biopsies. They can be expanded in vitro when culturing in a medium containing a specific set of growth factors. When the culture medium is changed into a new medium containing growth factors that promote differentiation, organoids differentiate into functional hepatocytes, which makes them susceptible to infection with recombinant HBV. The novel in vitro primary model system described in this protocol can be utilized as a platform to study HBV pathogenesis and drug screening. Organoids generated from cirrhotic liver biopsies can be a potential tool for personalized medicine, and for modeling HCC and other liver diseases. Graphic abstract.

5.
Elife ; 102021 07 30.
Article in English | MEDLINE | ID: mdl-34328417

ABSTRACT

The molecular events that drive hepatitis B virus (HBV)-mediated transformation and tumorigenesis have remained largely unclear, due to the absence of a relevant primary model system. Here we propose the use of human liver organoids as a platform for modeling HBV infection and related tumorigenesis. We first describe a primary ex vivo HBV-infection model derived from healthy donor liver organoids after challenge with recombinant virus or HBV-infected patient serum. HBV-infected organoids produced covalently closed circular DNA (cccDNA) and HBV early antigen (HBeAg), expressed intracellular HBV RNA and proteins, and produced infectious HBV. This ex vivo HBV-infected primary differentiated hepatocyte organoid platform was amenable to drug screening for both anti-HBV activity and drug-induced toxicity. We also studied HBV replication in transgenically modified organoids; liver organoids exogenously overexpressing the HBV receptor sodium taurocholate co-transporting polypeptide (NTCP) after lentiviral transduction were not more susceptible to HBV, suggesting the necessity for additional host factors for efficient infection. We also generated transgenic organoids harboring integrated HBV, representing a long-term culture system also suitable for viral production and the study of HBV transcription. Finally, we generated HBV-infected patient-derived liver organoids from non-tumor cirrhotic tissue of explants from liver transplant patients. Interestingly, transcriptomic analysis of patient-derived liver organoids indicated the presence of an aberrant early cancer gene signature, which clustered with the hepatocellular carcinoma (HCC) cohort on The Cancer Genome Atlas Liver Hepatocellular Carcinoma dataset and away from healthy liver tissue, and may provide invaluable novel biomarkers for the development of HCC and surveillance in HBV-infected patients.


Subject(s)
Carcinoma, Hepatocellular/virology , Hepatitis B/virology , Liver Neoplasms/virology , Organoids/virology , Hep G2 Cells , Hepatitis B/complications , Hepatitis B virus/pathogenicity , Humans , Liver/pathology , Liver/virology , Living Donors , Models, Biological , Virus Replication
6.
Cell Death Dis ; 12(7): 641, 2021 06 23.
Article in English | MEDLINE | ID: mdl-34162831

ABSTRACT

A major unmet clinical need is a therapeutic capable of removing hepatitis B virus (HBV) genome from the liver of infected individuals to reduce their risk of developing liver cancer. A strategy to deliver such a therapy could utilize the ability to target and promote apoptosis of infected hepatocytes. Presently there is no clinically relevant strategy that has been shown to effectively remove persistent episomal covalently closed circular HBV DNA (cccDNA) from the nucleus of hepatocytes. We used linearized single genome length HBV DNA of various genotypes to establish a cccDNA-like reservoir in immunocompetent mice and showed that clinical-stage orally administered drugs that antagonize the function of cellular inhibitor of apoptosis proteins can eliminate HBV replication and episomal HBV genome in the liver. Primary human liver organoid models were used to confirm the clinical relevance of these results. This study underscores a clinically tenable strategy for the potential elimination of chronic HBV reservoirs in patients.


Subject(s)
Antiviral Agents/pharmacology , Azocines/pharmacology , Benzhydryl Compounds/pharmacology , Genome, Viral , Hepatitis B virus/drug effects , Hepatitis B/drug therapy , Hepatocytes/drug effects , Inhibitor of Apoptosis Proteins/antagonists & inhibitors , Liver/drug effects , Thiazoles/pharmacology , Animals , Disease Models, Animal , Hep G2 Cells , Hepatitis B/metabolism , Hepatitis B/pathology , Hepatitis B/virology , Hepatitis B virus/genetics , Hepatocytes/metabolism , Hepatocytes/pathology , Hepatocytes/virology , Host-Pathogen Interactions , Humans , Inhibitor of Apoptosis Proteins/metabolism , Liver/metabolism , Liver/pathology , Liver/virology , Mice, Inbred C57BL , Mice, Knockout , Molecular Targeted Therapy , Organoids , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...