Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 898
Filter
1.
Osteoporos Int ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38960982

ABSTRACT

Task Force on 'Clinical Algorithms for Fracture Risk' commissioned by the American Society for Bone and Mineral Research (ASBMR) Professional Practice Committee has recommended that FRAX® models in the US do not include adjustment for race and ethnicity. This position paper finds that an agnostic model would unfairly discriminate against the Black, Asian and Hispanic communities and recommends the retention of ethnic and race-specific FRAX models for the US, preferably with updated data on fracture and death hazards. In contrast, the use of intervention thresholds based on a fixed bone mineral density unfairly discriminates against the Black, Asian and Hispanic communities in the US. This position of the Working Group on Epidemiology and Quality of Life of the International Osteoporosis Foundation (IOF) is endorsed both by the IOF and the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO).

2.
Phys Chem Chem Phys ; 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39046427

ABSTRACT

The work provides a comprehensive explanation of the nature of chemical bonding through quantum chemical topology for multilayers of AIIIBVI compounds, such as GaSe, InSe, and GaTe, spanning pressures from 0 GPa to 30 GPa. These compounds are subjected to pressure orthogonal to the multilayers. Quantum chemical topological indices indicate that uniaxial pressure induces changes in hybridisation, leading to the disappearance of interlayer van der Waals forces. The distinct nature of the elements within the compounds results in different pressures at which van der Waals interactions disappear, as revealed by non-covalent interaction analysis. The presence or absence of chemical bonding is assessed by quantum topological indices as Espinosa indices, charge density distribution difference, and crystal orbital Hamilton populations. The varying changes in hybridisation, as indicated by topological indices, are corroborated by variations in the population of the electronic projected density of states. Ultimately, the type of chemical bonding is identified through the Espinosa indices in the field of Bader theory. This analysis confirms the existence of shared shell bonds between AIII and BVI atoms in vacuum that goes to an intermediate bond between shared and closed shells called the transition zone with increasing pressure. The implications and importance of this work extend beyond the presented results. It suggests that many other classes of two-dimensional materials may undergo phase transitions under uniaxial stress, leading to the formation of new phases with potentially interesting electronic properties.

3.
Biomolecules ; 14(7)2024 Jun 24.
Article in English | MEDLINE | ID: mdl-39062460

ABSTRACT

1,2,4-Triazole derivatives have a wide range of biological activities. The most well-known drug that contains 1,2,4-triazole as part of its structure is the nucleoside analogue ribavirin, an antiviral drug. Finding new nucleosides based on 1,2,4-triazole is a topical task. The aim of this study was to synthesize ribosides and deoxyribosides of 1,2,4-triazole-3-thione derivatives and test their antiviral activity against herpes simplex viruses. Three compounds from a series of synthesized mono- and disubstituted 1,2,4-triazole-3-thione derivatives were found to be substrates for E. coli purine nucleoside phosphorylase. Of six prepared nucleosides, the riboside and deoxyriboside of 3-phenacylthio-1,2,4-triazole were obtained at good yields. The yields of the disubstituted 1,2,4-triazol-3-thiones were low due to the effect of bulky substituents at the C3 and C5 positions on the selectivity of enzymatic glycosylation for one particular nitrogen atom in the triazole ring. The results of cytotoxic and antiviral studies on acyclovir-sensitive wild-type strain HSV-1/L2(TK+) and acyclovir-resistant strain (HSV-1/L2/RACV) in Vero E6 cell culture showed that the incorporation of a thiobutyl substituent into the C5 position of 3-phenyl-1,2,4-triazole results in a significant increase in the cytotoxicity of the base and antiviral activity. The highest antiviral activity was observed in the 3-phenacylthio-1-(ß-D-ribofuranosyl)-1,2,4-triazole and 5-butylthio-1-(2-deoxy-ß-D-ribofuranosyl)-3-phenyl-1,2,4-triazole nucleosides, with their selectivity indexes being significantly higher than that of ribavirin. It was also found that with the increasing lipophilicity of the nucleosides, the activity and toxicity of the tested compounds increased.


Subject(s)
Antiviral Agents , Escherichia coli , Nucleosides , Purine-Nucleoside Phosphorylase , Triazoles , Triazoles/chemistry , Triazoles/pharmacology , Triazoles/chemical synthesis , Purine-Nucleoside Phosphorylase/metabolism , Purine-Nucleoside Phosphorylase/antagonists & inhibitors , Antiviral Agents/pharmacology , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Escherichia coli/drug effects , Escherichia coli/enzymology , Nucleosides/chemistry , Nucleosides/chemical synthesis , Nucleosides/pharmacology , Thiones/chemistry , Thiones/pharmacology , Thiones/chemical synthesis , Animals , Chlorocebus aethiops , Vero Cells
4.
Biomolecules ; 14(7)2024 Jul 04.
Article in English | MEDLINE | ID: mdl-39062512

ABSTRACT

Enzymatic transglycosylation of the fleximer base 4-(4-aminopyridine-3-yl)-1H-pyrazole using recombinant E. coli purine nucleoside phosphorylase (PNP) resulted in the formation of "non-typical" minor products of the reaction. In addition to "typical" N1-pyrazole nucleosides, a 4-imino-pyridinium riboside and a N1-pyridinium-N1-pyrazole bis-ribose derivative were formed. N1-Pyrazole 2'-deoxyribonucleosides and a N1-pyridinium-N1-pyrazole bis-2'-deoxyriboside were formed. But 4-imino-pyridinium deoxyriboside was not formed in the reaction mixture. The role of thermodynamic parameters of key intermediates in the formation of reaction products was elucidated. To determine the mechanism of binding and activation of heterocyclic substrates in the E. coli PNP active site, molecular modeling of the fleximer base and reaction products in the enzyme active site was carried out. As for N1-pyridinium riboside, there are two possible locations for it in the PNP active site. The presence of a relatively large space in the area of amino acid residues Phe159, Val178, and Asp204 allows the ribose residue to fit into that space, and the heterocyclic base can occupy a position that is suitable for subsequent glycosylation. Perhaps it is this "upside down" arrangement that promotes secondary glycosylation and the formation of minor bis-riboside products.


Subject(s)
Escherichia coli , Purine-Nucleoside Phosphorylase , Purine-Nucleoside Phosphorylase/metabolism , Purine-Nucleoside Phosphorylase/chemistry , Purine-Nucleoside Phosphorylase/genetics , Glycosylation , Escherichia coli/genetics , Escherichia coli/enzymology , Escherichia coli/metabolism , Recombinant Proteins/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Catalytic Domain , Nucleosides/chemistry , Nucleosides/metabolism , Models, Molecular
5.
Mar Drugs ; 22(7)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-39057403

ABSTRACT

Three new monosulfated polyhydroxysteroid glycosides, spiculiferosides A (1), B (2), and C (3), along with new related unsulfated monoglycoside, spiculiferoside D (4), were isolated from an ethanolic extract of the starfish Henricia leviuscula spiculifera collected in the Sea of Okhotsk. Compounds 1-3 contain two carbohydrate moieties, one of which is attached to C-3 of the steroid tetracyclic core, whereas another is located at C-24 of the side chain of aglycon. Two glycosides (2, 3) are biosides, and one glycoside (1), unlike them, includes three monosaccharide residues. Such type triosides are a rare group of polar steroids of sea stars. In addition, the 5-substituted 3-OSO3-α-L-Araf unit was found in steroid glycosides from starfish for the first time. Cell viability analysis showed that 1-3 (at concentrations up to 100 µM) had negligible cytotoxicity against human embryonic kidney HEK293, melanoma SK-MEL-28, breast cancer MDA-MB-231, and colorectal carcinoma HCT 116 cells. These compounds significantly inhibited proliferation and colony formation in HCT 116 cells at non-toxic concentrations, with compound 3 having the greatest effect. Compound 3 exerted anti-proliferative effects on HCT 116 cells through the induction of dose-dependent cell cycle arrest at the G2/M phase, regulation of expression of cell cycle proteins CDK2, CDK4, cyclin D1, p21, and inhibition of phosphorylation of protein kinases c-Raf, MEK1/2, ERK1/2 of the MAPK/ERK1/2 pathway.


Subject(s)
Antineoplastic Agents , Glycosides , Starfish , Animals , Humans , Starfish/chemistry , Glycosides/pharmacology , Glycosides/chemistry , Glycosides/isolation & purification , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Cell Line, Tumor , Cell Survival/drug effects , Steroids/pharmacology , Steroids/chemistry , Steroids/isolation & purification , Cell Proliferation/drug effects
6.
Mar Drugs ; 22(7)2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39057426

ABSTRACT

Ten new decalin polyketides, zosteropenilline M (1), 11-epi-8-hydroxyzosteropenilline M (2), zosteropenilline N (3), 8-hydroxyzosteropenilline G (4), zosteropenilline O (5), zosteropenilline P (6), zosteropenilline Q (7), 13-dehydroxypallidopenilline A (8), zosteropenilline R (9) and zosteropenilline S (10), together with known zosteropenillines G (11) and J (12), pallidopenilline A (13) and 1-acetylpallidopenilline A (14), were isolated from the ethyl acetate extract of the fungus Penicillium yezoense KMM 4679 associated with the seagrass Zostera marina. The structures of isolated compounds were established based on spectroscopic methods. The absolute configurations of zosteropenilline Q (7) and zosteropenilline S (10) were determined using a combination of the modified Mosher's method and ROESY data. The absolute configurations of zosteropenilline M (1) and zosteropenilline N (3) were determined using time-dependent density functional theory (TD-DFT) calculations of the ECD spectra. A biogenetic pathway for compounds 1-14 is proposed. The antimicrobial, cytotoxic and cytoprotective activities of the isolated compounds were also studied. The significant cytoprotective effects of the new zosteropenilline M and zosteropenillines O and R were found in a cobalt chloride (II) mimic in in vitro hypoxia in HEK-293 cells. 1-Acetylpallidopenilline A (14) exhibited high inhibition of human breast cancer MCF-7 cell colony formation with IC50 of 0.66 µM and its anticancer effect was reduced when MCF-7 cells were pretreated with 4-hydroxitamoxifen. Thus, we propose 1-acetylpallidopenilline A as a new xenoestrogen with significant activity against breast cancer.


Subject(s)
Penicillium , Zosteraceae , Penicillium/chemistry , Humans , Cell Line, Tumor , Polyketides/pharmacology , Polyketides/chemistry , Polyketides/isolation & purification , MCF-7 Cells , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Aquatic Organisms
7.
Molecules ; 29(11)2024 May 28.
Article in English | MEDLINE | ID: mdl-38893409

ABSTRACT

Merging the functionality of an organic field-effect transistor (OFET) with either a light emission or a photoelectric effect can increase the efficiency of displays or photosensing devices. In this work, we show that an organic semiconductor enables a multifunctional OFET combining electroluminescence (EL) and a photoelectric effect. Specifically, our computational and experimental investigations of a six-ring thiophene-phenylene co-oligomer (TPCO) revealed that this material is promising for OFETs, light-emitting, and photoelectric devices because of the large oscillator strength of the lowest-energy singlet transition, efficient luminescence, pronounced delocalization of the excited state, and balanced charge transport. The fabricated OFETs showed a photoelectric response for wavelengths shorter than 530 nm and simultaneously EL in the transistor channel, with a maximum at ~570 nm. The devices demonstrated an EL external quantum efficiency (EQE) of ~1.4% and a photoelectric responsivity of ~0.7 A W-1, which are among the best values reported for state-of-the-art organic light-emitting transistors and phototransistors, respectively. We anticipate that our results will stimulate the design of efficient materials for multifunctional organic optoelectronic devices and expand the potential applications of organic (opto)electronics.

8.
Nat Prod Bioprospect ; 14(1): 38, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38886261

ABSTRACT

The marine holothurian-derived fungal strain KMM 4401 has been identified as Paragliomastix luzulae using 28S rDNA, ITS regions and the partial TEF1 gene sequences. The metabolite profile of the fungal culture was studied by UPLC-MS technique. The strain KMM 4401 is a source of various virescenoside-type isopimarane glycosides suggested as chemotaxonomic feature for this fungal species. Also Px. luzulae KMM 4401 was proposed as possible source of new bioactive secondary metabolites especially antimicrobials. Moreover, the co-cultures of Px. luzulae KMM 4401 with another marine fungus Penicillium hispanicum KMM 4689 inoculated simultaneously or after two weeks were investigated by same way. It was shown, that P. hispanicum KMM 4689 suppressed the production of most of Px. luzulae KMM 4401 metabolites. On the other hand, the co-cultivation of P. hispanicum KMM 4689 and Px. luzulae KMM 4401 resulted in increasing of production of main deoxyisoaustamide alkaloids of P. hispanicum KMM 4689 on 50-190%.

9.
Int J Mol Sci ; 25(11)2024 May 30.
Article in English | MEDLINE | ID: mdl-38892216

ABSTRACT

The escalating threat of multidrug-resistant pathogens necessitates innovative approaches to combat infectious diseases. In this study, we examined peptides R23FS*, V31KS*, and R44KS*, which were engineered to include an amyloidogenic fragment sourced from the S1 protein of S. aureus, along with one or two cell-penetrating peptide (CPP) components. We assessed the antimicrobial efficacy of these peptides in a liquid medium against various strains of both Gram-positive bacteria, including S. aureus (209P and 129B strains), MRSA (SA 180 and ATCC 43300 strains), and B. cereus (strain IP 5832), and Gram-negative bacteria such as P. aeruginosa (ATCC 28753 and 2943 strains) and E. coli (MG1655 and K12 strains). Peptides R23FS*, V31KS*, and R44KS* exhibited antimicrobial activity comparable to gentamicin and meropenem against all tested bacteria at concentrations ranging from 24 to 48 µM. The peptides showed a stronger antimicrobial effect against B. cereus. Notably, peptide R44KS* displayed high efficacy compared to peptides R23FS* and V31KS*, particularly evident at lower concentrations, resulting in significant inhibition of bacterial growth. Furthermore, modified peptides V31KS* and R44KS* demonstrated enhanced inhibitory effects on bacterial growth across different strains compared to their unmodified counterparts V31KS and R44KS. These results highlight the potential of integrating cell-penetrating peptides, amyloidogenic fragments, and amino acid residue modifications to advance the innovation in the field of antimicrobial peptides, thereby increasing their effectiveness against a broad spectrum of pathogens.


Subject(s)
Antimicrobial Peptides , Cell-Penetrating Peptides , Microbial Sensitivity Tests , Cell-Penetrating Peptides/chemistry , Cell-Penetrating Peptides/pharmacology , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Amino Acids/chemistry , Drug Design , Amyloidogenic Proteins/chemistry
10.
Int J Mol Sci ; 25(10)2024 May 17.
Article in English | MEDLINE | ID: mdl-38791532

ABSTRACT

The development of photocurable compositions is in high demand for the manufacture of functional materials for electronics, optics, medicine, energy, etc. The properties of the final photo-cured material are primarily determined by the initial mixture, which needs to be tuned for each application. In this study we propose to use simple systems based on di(meth)acrylate, polyimide and photoinitiator for the preparation of new photo-curable compositions. It was established that a fluorinated cardo copolyimide (FCPI) based on 2,2-bis-(3,4-dicarboxydiphenyl)hexafluoropropane dianhydride, 9,9-bis-(4-aminophenyl)fluorene and 2,2-bis-(4-aminophenyl)hexafluoropropane (1.00:0.75:0.25 mol) has excellent solubility in di(met)acrylates. This made it possible to prepare solutions of FCPI in such monomers, to study the effect of FCPI on the kinetics of their photopolymerization in situ and the properties of the resulting polymers. According to the obtained data, the solutions of FCPI (23 wt.%) in 1,4-butanediol diacrylate (BDDA) and FCPI (15 wt.%) in tetraethylene glycol diacrylate were tested for the formation of the primary protective coatings of the silica optical fibers. It was found that the new coating of poly(BDDA-FCPI23%) can withstand prolonged annealing at 200 °C (72 h), which is comparable or superior to the known most thermally stable photo-curable coatings. The proposed approach can be applied to obtain other functional materials.


Subject(s)
Optical Fibers , Polymerization , Silicon Dioxide , Silicon Dioxide/chemistry , Solubility , Imides/chemistry , Temperature , Acrylates/chemistry , Polymers/chemistry , Halogenation , Photochemical Processes
11.
Nat Prod Bioprospect ; 14(1): 32, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38769256

ABSTRACT

Four extracts of the marine-derived fungus Penicillium velutinum J.F.H. Beyma were obtained via metal ions stress conditions based on the OSMAC (One Strain Many Compounds) strategy. Using a combination of modern approaches such as LC/UV, LC/MS and bioactivity data analysis, as well as in silico calculations, influence metal stress factors to change metabolite profiles Penicillium velutinum were analyzed. From the ethyl acetate extract of the P. velutinum were isolated two new piperazine derivatives helvamides B (1) and C (2) together with known saroclazin A (3) (4S,5R,7S)-4,11-dihydroxy-guaia-1(2),9(10)-dien (4). Their structures were established based on spectroscopic methods. The absolute configuration of helvamide B (1) as 2R,5R was determined by a combination of the X-ray analysis and by time-dependent density functional theory (TD-DFT) calculations of electronic circular dichroism (ECD) spectra. The cytotoxic activity of the isolated compounds against human prostate cancer PC-3 and human embryonic kidney HEK-293 cells and growth inhibition activity against yeast-like fungi Candida albicans were assayed.

12.
Int J Mol Sci ; 25(7)2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38612796

ABSTRACT

The development of novel anticoagulants requires a comprehensive investigational approach that is capable of characterizing different aspects of antithrombotic activity. The necessary experiments include both in vitro assays and studies on animal models. The required in vivo approaches include the assessment of pharmacokinetic and pharmacodynamic profiles and studies of hemorrhagic and antithrombotic effects. Comparison of anticoagulants with different mechanisms of action and administration types requires unification of the experiment scheme and its adaptation to existing laboratory conditions. The rodent thrombosis models in combination with the assessment of hemostasis parameters and hematological analysis are the classic methods for conducting preclinical studies. We report an approach for the comparative study of the activity of different anticoagulants in vivo, including the investigation of pharmacodynamics and the assessment of hemorrhagic effects (tail-cut bleeding model) and pathological thrombus formation (inferior vena cava stenosis model of venous thrombosis). The reproducibility and uniformity of our set of experiments were illustrated on unfractionated heparin and dabigatran etexilate (the most common pharmaceuticals in antithrombic therapy) as comparator drugs and an experimental drug variegin from the tick Amblyomma variegatum. Variegin is notorious since it is a potential analogue of bivalirudin (Angiomax, Novartis AG, Basel, Switzerland), which is now being actively introduced into antithrombotic therapy.


Subject(s)
Anticoagulants , Heparin , Animals , Pharmaceutical Preparations , Anticoagulants/pharmacology , Anticoagulants/therapeutic use , Heparin/pharmacology , Heparin/therapeutic use , Fibrinolytic Agents/pharmacology , Fibrinolytic Agents/therapeutic use , Reproducibility of Results
13.
Biochemistry (Mosc) ; 89(3): 431-440, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38648763

ABSTRACT

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL/Apo2L) is a promising agent for treatment of AML due to its specific apoptosis-inducing effect on tumor cells but not normal cells. However, emergence of resistance to TRAIL in the AML cells limits its potential as an antileukemic agent. Previously, we revealed increase in the resistance of the human AML THP-1 cells to the TRAIL-induced death during their LPS-dependent proinflammatory activation and in the in vitro model of LPS-independent proinflammatory activation - in a long-term high-density cell culture. In this study, we investigated mechanisms of this phenomenon using Western blot analysis, caspase 3 enzymatic activity analysis, quantitative reverse transcription-PCR, and flow cytometry. The results showed that the increased resistance to the TRAIL-induced cell death of AML THP-1 cells during their pro-inflammatory activation is associated with the decrease in the surface expression of the proapoptotic receptors TRAIL-R1/DR4 and TRAIL-R2/DR5, as well as with the increased content of members of the IAPs family - Livin and cIAP2. The results of this article open up new insights into the role of inflammation in formation of the resistance of AML cells to the action of mediators of antitumor immunity, in particular TRAIL.


Subject(s)
Apoptosis , Leukemia, Myeloid, Acute , Receptors, TNF-Related Apoptosis-Inducing Ligand , TNF-Related Apoptosis-Inducing Ligand , Humans , TNF-Related Apoptosis-Inducing Ligand/metabolism , TNF-Related Apoptosis-Inducing Ligand/pharmacology , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/drug therapy , Apoptosis/drug effects , Receptors, TNF-Related Apoptosis-Inducing Ligand/metabolism , Receptors, TNF-Related Apoptosis-Inducing Ligand/genetics , THP-1 Cells , Inflammation/metabolism , Lipopolysaccharides/pharmacology , Caspase 3/metabolism
14.
Polymers (Basel) ; 16(8)2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38675083

ABSTRACT

This paper provides a study of two bone substitutes: a hybrid porous polymer and an osteoplastic matrix based on a bovine-derived xenograft. Both materials are porous, but their pore characteristics are different. The osteoplastic matrix has pores of 300-600 µm and the hybrid polymer has smaller pores, generally of 6-20 µm, but with some pores up to 100 µm across. SEM data confirmed the porometry results and demonstrated the different structures of the materials. Therefore, both materials were characterized by an interconnected porous structure and provided conditions for the adhesion and vital activity of human ASCs in vitro. In an experimental model of rabbit shin bone defect, it was shown that, during the 6-month observation period, neither of the materials caused negative reactions in the experimental animals. By the end of the observation period, restoration of the defects in animals in both groups was completed, and elements of both materials were preserved in the defect areas. Data from morphological examinations and CT data demonstrated that the rate of rabbit bone tissue regeneration with the hybrid polymer was comparable to that with the osteoplastic matrix. Therefore, the hybrid polymer has good potential for use in further research and improvement in biomedical applications.

15.
Molecules ; 29(5)2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38474543

ABSTRACT

Copper-organic compounds have gained momentum as potent antitumor drug candidates largely due to their ability to generate an oxidative burst upon the transition of Cu2+ to Cu1+ triggered by the exogenous-reducing agents. We have reported the differential potencies of a series of Cu(II)-organic complexes that produce reactive oxygen species (ROS) and cell death after incubation with N-acetylcysteine (NAC). To get insight into the structural prerequisites for optimization of the organic ligands, we herein investigated the electrochemical properties and the cytotoxicity of Cu(II) complexes with pyridylmethylenethiohydantoins, pyridylbenzothiazole, pyridylbenzimidazole, thiosemicarbazones and porphyrins. We demonstrate that the ability of the complexes to kill cells in combination with NAC is determined by the potential of the Cu+2 → Cu+1 redox transition rather than by the spatial structure of the organic ligand. For cell sensitization to the copper-organic complex, the electrochemical potential of the metal reduction should be lower than the oxidation potential of the reducing agent. Generally, the structural optimization of copper-organic complexes for combinations with the reducing agents should include uncharged organic ligands that carry hard electronegative inorganic moieties.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Copper/chemistry , Reducing Agents , Antineoplastic Agents/chemistry , Oxidation-Reduction , Reactive Oxygen Species/metabolism , Coordination Complexes/chemistry , Ligands
16.
Life (Basel) ; 14(3)2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38541608

ABSTRACT

Doxorubicin (DOX) is a prevalent anticancer agent; however, it is unfortunately characterized by high cardiotoxicity, myelosuppression, and multiple other side effects. To overcome DOX limitations, two novel pyridoxine-derived doxorubicin derivatives were synthesized (DOX-1 and DOX-2). In the present study, their antitumor activity and mechanism of action were investigated. Of these two compounds, DOX-2, in which the pyridoxine fragment is attached to the doxorubicin molecule via a C3 linker, revealed higher selectivity against specific cancer cell types compared to doxorubicin and a promising safety profile for conditionally normal cells. However, the compound with a C1 linker (DOX-1) was not characterized by selectivity of antitumor action. It was revealed that DOX-2 obstructs cell cycle progression, induces apoptosis via the mitochondrial pathway without the development of necrosis, and showcases antioxidant capabilities, underlining its cell-regulatory roles. In contrast to doxorubicin's DNA-centric mechanism, DOX-2 does not interact with nuclear DNA. Given these findings, DOX-2 presents a new promising direction in cancer therapeutics, which is deserving of further in vivo exploration.

17.
ACS Omega ; 9(10): 11551-11561, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38496966

ABSTRACT

Mitochondrial uncouplers are actively sought as potential therapeutics. Here, we report the first successful synthesis of mitochondria-targeted derivatives of the highly potent uncoupler 3,5-ditert-butyl-4-hydroxybenzylidene-malononitrile (SF6847), bearing a cationic alkyl(triphenyl)phosphonium (TPP) group. As a key step of the synthesis, we used condensation of a ketophenol with malononitrile via the Knoevenagel reaction. SF-C5-TPP with a pentamethylene linker between SF6847 and TPP, stimulating respiration and collapsing membrane potential of rat liver mitochondria at submicromolar concentrations, proved to be the most effective uncoupler of the series. SF-C5-TPP showed pronounced protonophoric activity on a model planar bilayer lipid membrane. Importantly, SF-C5-TPP exhibited rather low toxicity in fibroblast cell culture, causing mitochondrial depolarization in cells at concentrations that only slightly affected cell viability. SF-C5-TPP was more effective in decreasing the mitochondrial membrane potential in the cell culture than SF6847, in contrast to the case of isolated mitochondria. Like other zwitterionic uncouplers, SF-C5-TPP inhibited the growth of Bacillus subtilis in the micromolar concentration range.

18.
J Funct Biomater ; 15(2)2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38391880

ABSTRACT

This study examined the effectiveness of coating demineralized bone matrix (DBM) with amorphous calcium phosphate (DBM + CaP), as well as a composite of DBM, calcium phosphate, and serum albumin (DBM + CaP + BSA). The intact structure of DBM promotes the transformation of amorphous calcium phosphate (CaP) into dicalcium phosphate dihydrate (DCPD) with a characteristic plate shape and particle size of 5-35 µm. The inclusion of BSA in the coating resulted in a better and more uniform distribution of CaP on the surface of DBM trabeculae. MG63 cells showed that both the obtained forms of CaP and its complex with BSA did not exhibit cytotoxicity up to a concentration of 10 mg/mL in vitro. Ectopic (subcutaneous) implantation in rats revealed pronounced biocompatibility, as well as strong osteoconductive, osteoinductive, and osteogenic effects for both DBM + CaP and DBM + CaP + BSA, but more pronounced effects for DBM + CaP + BSA. In addition, for the DBM + CaP + BSA samples, there was a pronounced full physiological intrafibrillar biomineralization and proangiogenic effect with the formation of bone-morrow-like niches, accompanied by pronounced processes of intramedullary hematopoiesis, indicating a powerful osteogenic effect of this composite.

19.
Biomedicines ; 12(2)2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38397865

ABSTRACT

Creating bioactive materials for bone tissue regeneration and augmentation remains a pertinent challenge. One of the most promising and rapidly advancing approaches involves the use of low-temperature ceramics that closely mimic the natural composition of the extracellular matrix of native bone tissue, such as Hydroxyapatite (HAp) and its phase precursors (Dicalcium Phosphate Dihydrate-DCPD, Octacalcium Phosphate-OCP, etc.). However, despite significant scientific interest, the current knowledge and understanding remain limited regarding the impact of these ceramics not only on reparative histogenesis processes but also on the immunostimulation and initiation of local aseptic inflammation leading to material rejection. Using the stable cell models of monocyte-like (THP-1ATRA) and macrophage-like (THP-1PMA) cells under the conditions of LPS-induced model inflammation in vitro, the influence of DCPD, OCP, and HAp on cell viability, ROS and intracellular NO production, phagocytosis, and the secretion of pro-inflammatory cytokines was assessed. The results demonstrate that all investigated ceramic particles exhibit biological activity toward human macrophage and monocyte cells in vitro, potentially providing conditions necessary for bone tissue restoration/regeneration in the peri-implant environment in vivo. Among the studied ceramics, DCPD appears to be the most preferable for implantation in patients with latent inflammation or unpredictable immune status, as this ceramic had the most favorable overall impact on the investigated cellular models.

20.
Chembiochem ; 25(7): e202300848, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38353515

ABSTRACT

We have recently discovered that ester-stabilized phosphorus ylides, resulting from deprotonation of a phosphonium salt such as [Ph3PCH2COOR], can transfer protons across artificial and biological membranes. To create more effective cationic protonophores, we synthesized similar phosphonium salts with one ((heptyloxycarbonylmethyl)(p-tolyl)bromide) or two ((butyloxycarbonylmethyl)(3,5-xylyl)osphonium bromide) methyl substituents in the phenyl groups. The methylation enormously augmented both protonophoric activity of the ylides on planar bilayer lipid membrane (BLM) and uncoupling of mammalian mitochondria, which correlated with strongly accelerated flip-flop of their cationic precursors across the BLM.


Subject(s)
Mitochondria, Liver , Phosphorus , Animals , Mitochondria, Liver/metabolism , Phosphorus/metabolism , Esters/metabolism , Bromides/metabolism , Methylation , Lipid Bilayers/metabolism , Mammals
SELECTION OF CITATIONS
SEARCH DETAIL
...