Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Language
Publication year range
1.
Biochem Soc Trans ; 50(6): 1737-1751, 2022 12 16.
Article in English | MEDLINE | ID: mdl-36383062

ABSTRACT

Pyrethroids (PY) are synthetic pesticides used in many applications ranging from large-scale agriculture to household maintenance. Their classical mechanisms of action are associated with binding to the sodium channel of insect neurons, disrupting its inactivation, ensuring their use as insecticides. However, PY can also lead to toxicity in vertebrates, including humans. In most toxicological studies, the impact of PY on heart function is neglected. Acute exposure to a high dose of PY causes enhancement of the late sodium current (INaL), which impairs the action potential waveform and can cause severe cardiac arrhythmias. Moreover, long-term, low-dose exposure to PY displays oxidative stress in the heart, which could induce tissue remodeling and impairment. Isolated and preliminary evidence supports that, for acute exposure to PY, an antiarrhythmic therapy with ranolazine (an INaL blocker), can be a promising therapeutic approach. Besides, heart tissue remodeling associated with low doses and long-term exposure to PY seems to benefit from antioxidant therapy. Despite significant leaps in understanding the mechanical details of PY intoxication, currently, few studies are focusing on the heart. In this review, we present what is known and what are the gaps in the field of cardiotoxicity induced by PY.


Subject(s)
Cardiotoxicity , Pyrethrins , Animals , Humans , Cardiotoxicity/drug therapy , Cardiotoxicity/metabolism , Pyrethrins/toxicity , Ranolazine , Sodium Channel Blockers/pharmacology , Sodium Channels/metabolism
2.
Life Sci ; 278: 119646, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-34048814

ABSTRACT

AIMS: SCN5A gene encodes the α-subunit of Nav1.5, mainly found in the human heart. SCN5A variants are the most common genetic alterations associated with Brugada syndrome (BrS). In rare cases, compound heterozygosity is observed; however, its functional consequences are poorly understood. We aimed to analyze the functional impact of de novo Nav1.5 mutations in compound heterozygosity in distinct alleles (G400R and T1461S positions) previously found in a patient with BrS. Moreover, we evaluated the potential benefits of quinidine to improve the phenotype of mutant Na+ channels in vitro. MATERIALS AND METHODS: The functional properties of human wild-type and Nav1.5 variants were evaluated using whole-cell patch-clamp and immunofluorescence techniques in transiently expressed human embryonic kidney (HEK293) cells. KEY FINDINGS: Both variants occur in the highly conservative positions of SCN5A. Although all variants were expressed in the cell membrane, a significant reduction in the Na+ current density (except for G400R alone, which was undetected) was observed along with abnormal biophysical properties, once the variants were expressed in homozygosis and heterozygosis. Interestingly, the incubation of transfected cells with quinidine partially rescued the biophysical properties of the mutant Na+ channel. SIGNIFICANCE: De novo compound heterozygosis mutations in SNC5A disrupt the Na+ macroscopic current. Quinidine could partially reverse the in vitro loss-of-function phenotype of Na+ current. Thus, our data provide, for the first time, a detailed biophysical characterization of dysfunctional Na+ channels linked to compound heterozygosity in BrS as well as the benefits of the pharmacological treatment using quinidine on the biophysical properties of Nav1.5.


Subject(s)
Brugada Syndrome/genetics , Loss of Function Mutation , NAV1.5 Voltage-Gated Sodium Channel/genetics , Amino Acid Sequence , Brugada Syndrome/drug therapy , Brugada Syndrome/metabolism , HEK293 Cells , Heterozygote , Humans , Loss of Function Mutation/drug effects , NAV1.5 Voltage-Gated Sodium Channel/chemistry , NAV1.5 Voltage-Gated Sodium Channel/metabolism , Point Mutation/drug effects , Quinidine/pharmacology
3.
Phytomedicine ; 18(7): 539-43, 2011 May 15.
Article in English | MEDLINE | ID: mdl-21112750

ABSTRACT

This study was undertaken to elucidate the effect of the essential oil from Alpinia speciosa (EOAs) on cardiac contractility and the underlying mechanisms. The essential oil was obtained from Alpinia speciosa leaves and flowers and the oil was analyzed by GC-MS method. Chemical analysis revealed the presence of at least 18 components. Terpinen-4-ol and 1,8-cineole corresponded to 38% and 18% of the crude oil, respectively. The experiments were conducted on spontaneously-beating right atria and on electrically stimulated left atria isolated from adult rats. The effect of EOAs on the isometric contractions and cardiac frequency in vitro was examined. EOAs decreased rat left atrial force of contraction with an EC50 of 292.2±75.7 µg/ml. Nifedipine, a well known L-type Ca²+ blocker, inhibited in a concentration-dependent manner left atrial force of contraction with an EC50 of 12.1±3.5 µg/ml. Sinus rhythm was diminished by EOAs with an EC50 of 595.4±56.2 µg/ml. Whole-cell L-type Ca²+ currents were recorded by using the patch-clamp technique. EOAs at 25 µg/ml decreased I(Ca,L) by 32.6±9.2% and at 250 µg/ml it decreased by 89.3±7.4%. Thus, inhibition of L-type Ca²+ channels is involved in the cardiodepressive effect elicited by the essential oil of Alpinia speciosa in rat heart.


Subject(s)
Alpinia/chemistry , Calcium Channel Blockers/pharmacology , Calcium Channels, L-Type/drug effects , Myocardial Contraction/drug effects , Oils, Volatile/pharmacology , Plant Extracts/chemistry , Animals , Calcium Channels, L-Type/metabolism , Depression, Chemical , Dose-Response Relationship, Drug , Female , Flowers/chemistry , Heart/drug effects , Male , Oils, Volatile/chemistry , Patch-Clamp Techniques , Plant Leaves/chemistry , Plant Oils/chemistry , Plant Oils/pharmacology , Plants, Medicinal/chemistry , Rats
4.
Braz J Med Biol Res ; 43(11): 1042-6, 2010 Nov.
Article in English | MEDLINE | ID: mdl-21049244

ABSTRACT

We determined the effects of exercise training and detraining on the morphological and mechanical properties of left ventricular myocytes in 4-month-old spontaneously hypertensive rats (SHR) randomly divided into the following groups: sedentary for 8 weeks (SED-8), sedentary for 12 weeks (SED-12), treadmill-running trained for 8 weeks (TRA, 16 m/min, 60 min/day, 5 days/week), and treadmill-running trained for 8 weeks followed by 4 weeks of detraining (DET). At sacrifice, left ventricular myocytes were isolated enzymatically, and resting cell length, width, and cell shortening after stimulation at a frequency of 1 Hz (~25°C) were measured. Cell length was greater in TRA than in SED-8 (161.30 ± 1.01 vs 156.10 ± 1.02 µm, P < 0.05, 667 vs 618 cells, respectively) and remained larger after detraining. Cell width and volume were unaffected by either exercise training or detraining. Cell length to width ratio was higher in TRA than in SED-8 (8.50 ± 0.08 vs 8.22 ± 0.10, P < 0.05) and was maintained after detraining. Exercise training did not affect cell shortening, which was unchanged with detraining. TRA cells exhibited higher maximum velocity of shortening than SED-8 (102.01 ± 4.50 vs 82.01 ± 5.30 µm/s, P < 0.05, 70 cells per group), with almost complete regression after detraining. The maximum velocity of relengthening was higher in TRA cells than in SED-8 (88.20 ± 4.01 vs70.01 ± 4.80 µm/s, P < 0.05), returning to sedentary values with detraining. Therefore, exercise training affected left ventricle remodeling in SHR towards eccentric hypertrophy, which remained after detraining. It also improved single left ventricular myocyte contractile function, which was reversed by detraining.


Subject(s)
Myocardial Contraction/physiology , Myocytes, Cardiac/physiology , Physical Conditioning, Animal , Ventricular Remodeling/physiology , Animals , Blood Pressure/physiology , Cardiovascular Deconditioning/physiology , Male , Rats , Rats, Inbred SHR , Ventricular Function, Left/physiology
5.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;43(11): 1042-1046, Nov. 2010. ilus, tab
Article in English | LILACS | ID: lil-564130

ABSTRACT

We determined the effects of exercise training and detraining on the morphological and mechanical properties of left ventricular myocytes in 4-month-old spontaneously hypertensive rats (SHR) randomly divided into the following groups: sedentary for 8 weeks (SED-8), sedentary for 12 weeks (SED-12), treadmill-running trained for 8 weeks (TRA, 16 m/min, 60 min/day, 5 days/week), and treadmill-running trained for 8 weeks followed by 4 weeks of detraining (DET). At sacrifice, left ventricular myocytes were isolated enzymatically, and resting cell length, width, and cell shortening after stimulation at a frequency of 1 Hz (~25°C) were measured. Cell length was greater in TRA than in SED-8 (161.30 ± 1.01 vs 156.10 ± 1.02 μm, P < 0.05, 667 vs 618 cells, respectively) and remained larger after detraining. Cell width and volume were unaffected by either exercise training or detraining. Cell length to width ratio was higher in TRA than in SED-8 (8.50 ± 0.08 vs 8.22 ± 0.10, P < 0.05) and was maintained after detraining. Exercise training did not affect cell shortening, which was unchanged with detraining. TRA cells exhibited higher maximum velocity of shortening than SED-8 (102.01 ± 4.50 vs 82.01 ± 5.30 μm/s, P < 0.05, 70 cells per group), with almost complete regression after detraining. The maximum velocity of relengthening was higher in TRA cells than in SED-8 (88.20 ± 4.01 vs70.01 ± 4.80 μm/s, P < 0.05), returning to sedentary values with detraining. Therefore, exercise training affected left ventricle remodeling in SHR towards eccentric hypertrophy, which remained after detraining. It also improved single left ventricular myocyte contractile function, which was reversed by detraining.


Subject(s)
Animals , Male , Rats , Myocardial Contraction/physiology , Myocytes, Cardiac/physiology , Physical Conditioning, Animal , Ventricular Remodeling/physiology , Blood Pressure/physiology , Cardiovascular Deconditioning/physiology , Rats, Inbred SHR , Ventricular Function, Left/physiology
6.
Life Sci ; 84(23-24): 817-24, 2009 Jun 05.
Article in English | MEDLINE | ID: mdl-19345230

ABSTRACT

AIMS: Thiamine is an important cofactor present in many biochemical reactions, and its deprivation can lead to heart dysfunction. Little is known about the influence of thiamine deprivation on the electrophysiological behavior of the isolated heart cells and information about thiamine deficiency in heart morphology is controversial. Thus, we decided to investigate the major repolarizing conductances and their influence in the action potential (AP) waveform as well as the changes in the heart structure in a set of thiamine deficiency in rats. MAIN METHODS: Using the patch-clamp technique, we investigated inward (I(K1)) and outward K(+) currents (I(to)), T-type and L-type Ca(2+) currents and APs. To evaluate heart morphology we used hematoxylin and eosin in transversal heart sections. KEY FINDINGS: Thiamine deficiency caused a marked decrease in left ventricle thickness, cardiomyocyte number, cell length and width, and membrane capacitance. When evaluating I(to) we did not find difference in current amplitude; however an acceleration of I(to) inactivation was observed. I(K1) showed a reduction in the amplitude and slope conductance, which implicated a less negative resting membrane potential in cardiac myocytes isolated from thiamine-deficient rats. We did not find any difference in L-type Ca(2+) current density. T-type Ca(2+) current was not observed. In addition, we did not observe significant changes in AP repolarization. SIGNIFICANCE: Based on our study we can conclude that thiamine deficiency causes heart hypotrophy and not heart hypertrophy. Moreover, we provided evidence that there is no major electrical remodeling during thiamine deficiency, a feature of heart failure models.


Subject(s)
Action Potentials/physiology , Disease Models, Animal , Heart Diseases/pathology , Heart Diseases/physiopathology , Thiamine Deficiency/pathology , Thiamine Deficiency/physiopathology , Animals , Heart Diseases/etiology , Hypertrophy, Left Ventricular/pathology , Hypertrophy, Left Ventricular/physiopathology , Male , Membrane Potentials/physiology , Myocytes, Cardiac/pathology , Myocytes, Cardiac/physiology , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL