Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Toxicol Chem ; 42(11): 2336-2349, 2023 11.
Article in English | MEDLINE | ID: mdl-37530422

ABSTRACT

Exposure characterization of crude oils, especially in time-sensitive circumstances such as spills and disasters, is a well-known analytical chemistry challenge. Gas chromatography-mass spectrometry is commonly used for "fingerprinting" and origin tracing in oil spills; however, this method is both time-consuming and lacks the resolving power to separate co-eluting compounds. Recent advances in methodologies to analyze petroleum substances using high-resolution analytical techniques have demonstrated both improved resolving power and higher throughput. One such method, ion mobility spectrometry-mass spectrometry (IMS-MS), is especially promising because it is both rapid and high-throughput, with the ability to discern among highly homologous hydrocarbon molecules. Previous applications of IMS-MS to crude oil analyses included a limited number of samples and did not provide detailed characterization of chemical constituents. We analyzed a diverse library of 195 crude oil samples using IMS-MS and applied a computational workflow to assign molecular formulas to individual features. The oils were from 12 groups based on geographical and geological origins: non-US (1 group), US onshore (3), and US Gulf of Mexico offshore (8). We hypothesized that information acquired through IMS-MS data would provide a more confident grouping and yield additional fingerprint information. Chemical composition data from IMS-MS was used for unsupervised hierarchical clustering, as well as machine learning-based supervised analysis to predict geographic and source rock categories for each sample; the latter also yielded several novel prospective biomarkers for fingerprinting of crude oils. We found that IMS-MS data have complementary advantages for fingerprinting and characterization of diverse crude oils and that proposed polycyclic aromatic hydrocarbon biomarkers can be used for rapid exposure characterization. Environ Toxicol Chem 2023;42:2336-2349. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Subject(s)
Petroleum , Petroleum/analysis , Ion Mobility Spectrometry , Mass Spectrometry , Gas Chromatography-Mass Spectrometry/methods , Biomarkers
2.
Regul Toxicol Pharmacol ; 137: 105310, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36473579

ABSTRACT

Products of petroleum refining are substances that are both complex and variable. These substances are produced and distributed in high volumes; therefore, they are heavily scrutinized in terms of their potential hazards and risks. Because of inherent compositional complexity and variability, unique challenges exist in terms of their registration and evaluation. Continued dialogue between the industry and the decision-makers has revolved around the most appropriate approach to fill data gaps and ensure safe use of these substances. One of the challenging topics has been the extent of chemical compositional characterization of products of petroleum refining that may be necessary for substance identification and hazard evaluation. There are several novel analytical methods that can be used for comprehensive characterization of petroleum substances and identification of most abundant constituents. However, translation of the advances in analytical chemistry to regulatory decision-making has not been as evident. Therefore, the goal of this review is to bridge the divide between the science of chemical characterization of petroleum and the needs and expectations of the decision-makers. Collectively, mutual appreciation of the regulatory guidance and the realities of what information these new methods can deliver should facilitate the path forward in ensuring safety of the products of petroleum refining.


Subject(s)
Petroleum , Petroleum/toxicity
3.
Mar Pollut Bull ; 185(Pt B): 114360, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36413931

ABSTRACT

Photooxidation can alter the environmental fate and effects of spilled oil. To better understand this process, oil slicks were generated on seawater mesocosms and exposed to sunlight for 8 days. The molecular composition of seawater under irradiated and non-irradiated oil slicks was characterized using ion mobility spectrometry-mass spectrometry and polyaromatic hydrocarbons analyses. Biomimetic extraction was performed to quantify neutral and ionized constituents. Results show that seawater underneath irradiated oil showed significantly higher amounts of hydrocarbons with oxygen- and sulfur-containing by-products peaking by day 4-6; however, concentrations of dissolved organic carbon were similar. Biomimetic extraction indicated toxic units in irradiated mesocosms increased, mainly due to ionized components, but remained <1, suggesting limited potential for ecotoxicity. Because the experimental design mimicked important aspects of natural conditions (freshly collected seawater, natural sunlight, and relevant oil thickness and concentrations), this study improves our understanding of the effects of photooxidation during a marine oil spill.


Subject(s)
Petroleum Pollution , Petroleum , Sunlight , Water , Seawater
4.
Environ Sci Technol ; 56(12): 7789-7799, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35605020

ABSTRACT

While chemical dispersants are a powerful tool for treating spilled oil, their effectiveness can be limited by oil weathering processes such as evaporation and emulsification. It has been suggested that oil photo-oxidation could exacerbate these challenges. To address the role of oil photo-oxidation in dispersant effectiveness, outdoor mesocosm experiments with crude oil on seawater were performed. Changes in bulk oil properties and molecular composition were quantified to characterize oil photo-oxidation over 11 days. To test relative dispersant effectiveness, oil residues were evaluated using the Baffled Flask Test. The results show that oil irradiation led to oxygen incorporation, formation of oxygenated hydrocarbons, and higher oil viscosities. Oil irradiation was associated with decreased dispersant efficacy, with effectiveness falling from 80 to <50% in the Baffled Flask Test after more than 3 days of irradiation. Increasing photo-oxidation-induced viscosity seems to drive the decreasing dispersant effectiveness. Comparing the Baffled Flask Test results with field data from the Deepwater Horizon oil spill showed that laboratory dispersant tests underestimate the dispersion of photo-oxidized oil in the field. Overall, the results suggest that prompt dispersant application (within 2-4 days), as recommended by current oil spill response guidelines, is necessary for effective dispersion of spilled oil.


Subject(s)
Petroleum Pollution , Petroleum , Water Pollutants, Chemical , Hydrocarbons , Surface-Active Agents/chemistry , Water Pollutants, Chemical/chemistry
5.
Fuel (Lond) ; 3172022 Jun 01.
Article in English | MEDLINE | ID: mdl-35250041

ABSTRACT

In the process of registration of substances of Unknown or Variable Composition, Complex Reaction Products or Biological Materials (UVCBs), information sufficient to enable substance identification must be provided. Substance identification for UVCBs formed through petroleum refining is particularly challenging due to their chemical complexity, as well as variability in refining process conditions and composition of the feedstocks. This study aimed to characterize compositional variability of petroleum UVCBs both within and across product categories. We utilized ion mobility spectrometry (IMS)-MS as a technique to evaluate detailed chemical composition of independent production cycle-derived samples of 6 petroleum products from 3 manufacturing categories (heavy aromatic, hydrotreated light paraffinic, and hydrotreated heavy paraffinic). Atmospheric pressure photoionization and drift tube IMS-MS were used to identify structurally related compounds and quantified between- and within-product variability. In addition, we determined both individual molecules and hydrocarbon blocks that were most variable in samples from different production cycles. We found that detailed chemical compositional data on petroleum UVCBs obtained from IMS-MS can provide the information necessary for hazard and risk characterization in terms of quantifying the variability of the products in a manufacturing category, as well as in subsequent production cycles of the same product.

6.
Toxics ; 11(1)2022 Dec 26.
Article in English | MEDLINE | ID: mdl-36668745

ABSTRACT

Cell-based testing of multi-constituent substances and mixtures for their potential adverse health effects is difficult due to their complex composition and physical-chemical characteristics. Various extraction methods are typically used to enable studies in vitro; however, a limited number of solvents are biocompatible with in vitro studies and the extracts may not fully represent the original test article's composition. While the methods for dosing with "difficult-to-test" substances in aquatic toxicity studies are well defined and widely used, they are largely unsuited for small-volume (100 microliters or less) in vitro studies with mammalian cells. Therefore, we aimed to evaluate suitability of various scaled-down dosing methods for high-throughput in vitro testing by using a mixture of polycyclic aromatic hydrocarbons (PAH). Specifically, we compared passive dosing via silicone micro-O-rings, cell culture media-accommodated fraction, and traditional solvent (dimethyl sulfoxide) extraction procedures. Gas chromatography-tandem mass spectrometry (GC-MS/MS) was used to evaluate kinetics of PAH absorption to micro-O-rings, as well as recovery of PAH and the extent of protein binding in cell culture media with and without cells for each dosing method. Bioavailability of the mixture from different dosing methods was also evaluated by characterizing in vitro cytotoxicity of the PAH mixture using EA.hy926 and HepG2 human cell lines. Of the tested dosing methods, media accommodated fraction (MAF) was determined to be the most appropriate method for cell-based studies of PAH-containing complex substances and mixtures. This conclusion is based on the observation that the highest fraction of the starting materials can be delivered using media accommodated fraction approach into cell culture media and thus enable concentration-response in vitro testing.

7.
Energy Fuels ; 35(13): 10529-10539, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-34366560

ABSTRACT

Ion mobility spectrometry coupled with mass spectrometry (IMS-MS) is a post-ionization separation technique that can be used for rapid multidimensional analyses of complex samples. IMS-MS offers untargeted analysis, including ion-specific conformational data derived as collisional cross section (CCS) values. Here, we combine nitrogen gas drift tube CCS (DTCCSN2) and Kendrick mass defect (KMD) analyses based on CH2 and H functional units to enable compositional analyses of petroleum substances. First, polycyclic aromatic compound standards were analyzed by IMS-MS to demonstrate how CCS assists the identification of isomeric species in homologous series. Next, we used case studies of a gasoline standard previously characterized for paraffin, isoparaffin, aromatic, naphthene, and olefinic (PIANO) compounds, and a crude oil sample to demonstrate the application of the KMD analyses and CCS filtering. Finally, we propose a workflow that enables confident molecular formula assignment to the IMS-MS-derived features in petroleum samples. Collectively, this work demonstrates how rapid untargeted IMS-MS analysis and the proposed data processing workflow can be used to provide confident compositional characterization of hydrocarbon-containing substances.

8.
Environ Toxicol Chem ; 40(4): 1034-1049, 2021 04.
Article in English | MEDLINE | ID: mdl-33315271

ABSTRACT

The complex chemical composition of crude oils presents many challenges for rapid chemical characterization in the case of a spill. A number of approaches are currently used to "fingerprint" petroleum-derived samples. Gas chromatography coupled with mass spectrometry (GC-MS) is the most common, albeit not very rapid, technique; however, with GC-MS alone, it is difficult to resolve the complex substances in crude oils. The present study examined the potential application of ion mobility spectrometry-mass spectrometry (IMS-MS) coupled with chem-informatic analyses as an alternative high-throughput method for the chemical characterization of crude oils. We analyzed 19 crude oil samples from on- and offshore locations in the Gulf of Mexico region in the United States using both GC-MS (biomarkers, gasoline range hydrocarbons, and n-alkanes) and IMS-MS (untargeted analysis). Hierarchical clustering, principal component analysis, and nearest neighbor-based classification were used to examine sample similarity and geographical groupings. We found that direct-injection IMS-MS performed either equally or better than GC-MS in the classification of the origins of crude oils. In addition, IMS-MS greatly increased the sample analysis throughput (minutes vs hours per sample). Finally, a tabletop science-to-practice exercise, utilizing both the GC-MS and IMS-MS data, was conducted with emergency response experts from regulatory agencies and the oil industry. This activity showed that the stakeholders found the IMS-MS data to be highly informative for rapid chemical fingerprinting of complex substances in general and specifically advantageous for accurate and confident source-grouping of crude oils. Collectively, the present study shows the utility of IMS-MS as a technique for rapid fingerprinting of complex samples and demonstrates its advantages over traditional GC-MS-based analyses when used for decision-making in emergency situations. Environ Toxicol Chem 2021;40:1034-1049. © 2020 SETAC.


Subject(s)
Petroleum Pollution , Petroleum , Gas Chromatography-Mass Spectrometry , Gasoline , Hydrocarbons , Petroleum/analysis , Petroleum Pollution/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...