Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem B ; 122(19): 4947-4955, 2018 05 17.
Article in English | MEDLINE | ID: mdl-29689164

ABSTRACT

Since the 1863 discovery of a new green hemoglobin derivative called "sulfhemoglobin", the nature of the characteristic 618 nm absorption band has been the subject of several hypotheses. The experimental spectra are a function of the observation time and interplay between two major sulfheme isomer concentrations (a three- and five-membered ring adduct), with the latter being the dominant isomer at longer times. Thus, time-dependent density functional theory (TDDFT) was used to calculate the sulfheme excited states and visualize the highest occupied molecular orbitals (HOMOs) and lowest unoccupied MOs (LUMOs) of both isomers in order to interpret the transitions between them. These two isomers have distinguishable a1u and a2u HOMO energies. Formation of the three-membered ring SA isomeric structure decreases the energy of the HOMO a1u and a2u orbitals compared to the unmodified heme due to the electron-withdrawing, sulfur-containing, three-membered ring. Conversely, formation of the SC isomeric structure decreases the energy of the HOMO a1u and a2u orbitals due to the electron-withdrawing, sulfur-containing, five-membered ring. The calculations reveal that the absorption spectrum within the 700 nm region arises from a mixture of MOs but can be characterized as π to π* transitions, while the 600 nm region is characterized by π to dπ (d yz, d xz) transitions having components of a deoxy-like derivative.


Subject(s)
Heme/analogs & derivatives , Hemoglobins/chemistry , Methionine/chemistry , Heme/chemistry , Hemoglobins/genetics , Hemoglobins/metabolism , Isomerism , Molecular Dynamics Simulation , Mutagenesis, Site-Directed , Nuclear Magnetic Resonance, Biomolecular , Quantum Theory , Spectrophotometry
2.
J Inorg Biochem ; 133: 78-86, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24513534

ABSTRACT

Traditionally known as a toxic gas, hydrogen sulfide (H2S) is now recognized as an important biological molecule involved in numerous physiological functions. Like nitric oxide (NO) and carbon monoxide (CO), H2S is produced endogenously in tissues and cells and can modulate biological processes by acting on target proteins. For example, interaction of H2S with the oxygenated form of human hemoglobin and myoglobin produces a sulfheme protein complex that has been implicated in H2S degradation. The presence of this sulfheme derivative has also been used as a marker for endogenous H2S synthesis and metabolism. Remarkably, human catalases and peroxidases also generate this sulfheme product. In this review, we describe the structural and functional aspects of the sulfheme derivative in these proteins and postulate a generalized mechanism for sulfheme protein formation. We also evaluate the possible physiological function of this complex and highlight the issues that remain to be assessed to determine the role of sulfheme proteins in H2S metabolism, detection and physiology.


Subject(s)
Heme/analogs & derivatives , Hemeproteins/metabolism , Hydrogen Sulfide/metabolism , Carbon Monoxide/metabolism , Heme/biosynthesis , Heme/metabolism , Humans , Hydrogen Sulfide/chemistry , Nitric Oxide/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...