Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Transl Stroke Res ; 14(5): 776-789, 2023 10.
Article in English | MEDLINE | ID: mdl-35906327

ABSTRACT

Post-menopausal women become vulnerable to stroke and have poorer outcomes and higher mortality than age-matched men, and previous studies suggested that sex chromosomes play a vital role in mediating stroke sensitivity in the aged. It is unknown if this is due to effects of the X or Y chromosome. The present study used the XY* mouse model (with four genotypes: XX and XO gonadal females and XY and XXY gonadal males) to compare the effect of the X vs. Y chromosome compliment in stroke. Aged (18-20 months) and gonadectomized young (8-12 weeks) mice were subjected to a 60-min middle cerebral artery occlusion. Infarct volume and behavioral deficits were quantified 3 days after stroke. Microglial activation and infiltration of peripheral leukocytes in the aged ischemic brain were assessed by flow cytometry. Plasma inflammatory cytokine levels by ELISA, and brain expression of two X chromosome-linked genes, KDM6A and KDM5C by immunochemistry, were also examined. Both aged and young XX and XXY mice had worse stroke outcomes compared to XO and XY mice, respectively; however, the difference between XX vs. XXY and XO vs. XY aged mice was minimal. Mice with two copies of the X chromosome showed more robust microglial activation, higher brain-infiltrating leukocytes, elevated plasma cytokine levels, and enhanced co-localization of KDM6A and KDM5C with Iba1+ cells after stroke than mice with one X chromosome. The number of X chromosomes mediates stroke sensitivity in aged mice, which might be processed through the X chromosome-linked genes and the inflammatory responses.


Subject(s)
Stroke , X Chromosome , Male , Mice , Female , Animals , X Chromosome/genetics , Y Chromosome/genetics , Stroke/genetics , Genotype , Cytokines/genetics
2.
J Neuroinflammation ; 18(1): 70, 2021 Mar 12.
Article in English | MEDLINE | ID: mdl-33712031

ABSTRACT

BACKGROUND: Stroke is a sexually dimorphic disease. Previous studies have found that young females are protected against ischemia compared to males, partially due to the protective effect of ovarian hormones, particularly estrogen (E2). However, there are also genetic and epigenetic effects of X chromosome dosage that contribute to stroke sensitivity and neuroinflammation after injury, especially in the aged. Genes that escape from X chromosome inactivation (XCI) contribute to sex-specific phenotypes in many disorders. Kdm5c and kdm6a are X escapee genes that demethylate H3K4me3 and H3K27me3, respectively. We hypothesized that the two demethylases play critical roles in mediating the stroke sensitivity. METHODS: To identify the X escapee genes involved in stroke, we performed RNA-seq in flow-sorted microglia from aged male and female wild type (WT) mice subjected to middle cerebral artery occlusion (MCAO). The expression of these genes (kdm5c/kdm6a) were confirmed in four core genotypes (FCG) mice and in post-mortem human stroke brains by immunohistochemistry (IHC), Western blot, and RT-PCR. Chromatin immunoprecipitation (ChIP) assays were conducted to detect DNA levels of inflammatory interferon regulatory factor (IRF) 4/5 precipitated by histone H3K4 and H3K27 antibodies. Manipulation of kdm5c/kdm6a expression with siRNA or lentivirus was performed in microglial culture, to determine downstream pathways and examine the regulatory roles in inflammatory cytokine production. RESULTS: Kdm5c and kdm6a mRNA levels were significantly higher in aged WT female vs. male microglia, and the sex difference also existed in ischemic brains from FCG mice and human stroke patients. The ChIP assay showed the IRF 4/5 had higher binding levels to demethylated H3K4 or H3K27, respectively, in female vs. male ischemic microglia. Knockdown or over expression of kdm5c/kdm6a with siRNA or lentivirus altered the methylation of H3K4 or H3K27 at the IRF4/5 genes, which in turn, impacted the production of inflammatory cytokines. CONCLUSIONS: The KDM-Histone-IRF pathways are suggested to mediate sex differences in cerebral ischemia. Epigenetic modification of stroke-related genes constitutes an important mechanism underlying the ischemic sexual dimorphism.


Subject(s)
Epigenesis, Genetic/genetics , Inflammation/genetics , Ischemic Stroke/genetics , Sex Characteristics , X Chromosome/genetics , Aged , Aged, 80 and over , Animals , Chromatin Immunoprecipitation , Cytokines/biosynthesis , Female , Genotype , Histone Demethylases/genetics , Humans , Male , Mice , Middle Aged , RNA, Small Interfering/genetics , Signal Transduction/genetics
3.
Neurochem Int ; 127: 148-157, 2019 07.
Article in English | MEDLINE | ID: mdl-30586599

ABSTRACT

Interferon regulatory factor 4 (IRF4), a transcription factor recognized as a key regulator of lymphoid and myeloid cell differentiation, has recently been recognized as a critical mediator of macrophage activation. Previously we have reported that IRF4 signaling is closely correlated with anti-inflammatory polarization of microglia in adult mice after stroke. However, IRF4's role in the inflammatory response in the immature brain is unknown. Using a model of neonatal hypoxic ischemic encephalopathy (HIE) we investigated the regulatory action of IRF4 signaling in the activation of microglia and monocytes after HIE. IRF4 myeloid cell conditional knockout (CKO) postnatal day 10 (P10) male pups were subjected to a 60-min hypoxic-ischemic insult by the Rice-Vanucci model (RVM). IRF4 gene floxed mice (IRF4fl/fl) were used as controls. Brain atrophy and behavioral deficits were measured 7 days after HIE. Flow cytometry (FC) was performed to examine central (microglial activation) and peripheral immune cell responses by both cell membrane and intracellular marker staining. Serum levels of cytokines were determined by ELISA. The results showed that IRF4 CKO pups had increased tissue loss and worse behavioral deficits than IRF4fl/fl mice seven days after HIE. FC demonstrated significantly more infiltration of monocytes and neutrophils in the ischemic brains of IRF4 CKO vs IRF4fl/fl pups. IRF4 CKO ischemic microglia were more pro-inflammatory as evidenced by higher expression of the pro-inflammatory marker CD68, and increased intracellular TNFα and IL-1ß levels compared to controls. In addition, IRF4 deletion from myeloid cells resulted in increased levels of circulating pro-inflammatory cytokines and higher endothelial MMP9 expression after HIE. These data indicate that IRF4 signaling in myeloid cells plays a regulatory role in neuroinflammation and that deletion of myeloid IRF4 is detrimental to HIE injury, suggesting that IRF4 could serve as a potential therapeutic target for neonatal ischemic brain injury.


Subject(s)
Brain Diseases/metabolism , Hypoxia-Ischemia, Brain/metabolism , Interferon Regulatory Factors/metabolism , Myeloid Cells/metabolism , Animals , Animals, Newborn , Brain/metabolism , Brain/physiology , Disease Models, Animal , Mice, Inbred C57BL , Mice, Transgenic , Microglia/metabolism
4.
Cell Transplant ; 27(9): 1328-1339, 2018 09.
Article in English | MEDLINE | ID: mdl-29692197

ABSTRACT

Neonatal hypoxic-ischemic encephalopathy (HIE) is increasingly recognized as a sexually dimorphic disease. Male infants are not only more vulnerable to ischemic insult; they also suffer more long-term cognitive deficits compared with females with comparable brain damage. The innate immune response plays a fundamental role in mediating acute neonatal HIE injury. However, the mechanism underlying the sex difference in chronic HIE is still elusive. The present study investigated the sex difference in HIE outcomes and inflammatory response in the chronic stage (30 days after HIE). Postnatal day 10 (P10) male and female C57BL/6 pups were subjected to 60-min Rice-Vanucci model (RVM) to induce HIE. Brain atrophy and behavioral deficits were analyzed to measure stroke outcomes at 30 days of HIE. Flow cytometry (FC) was performed to examine central (microglial activation) and peripheral immune responses. Serum levels of cytokines and sex hormones were determined by enzyme-linked immunosorbent assay (ELISA). Neurogenesis was quantified by 5-Bromo-2'-deoxyuridine (BrdU) incorporation with neurons. Results showed males had worse HIE outcomes than females at the endpoint. Female microglia exhibited a more robust anti-inflammatory response that was corresponding to an enhanced expression of CX3C chemokine receptor 1 (CX3CR1) than males. More infiltration of peripheral lymphocytes was seen in male vs. female HIE brains. Cytokine levels of tumor necrosis factor (TNF)-α and interleukin (IL)-10 were more upregulated in males and females respectively than their counterparts. Neurogenesis was more highly induced in females vs. males. No significant difference in circulating hormonal level was found between males and females after HIE. We conclude that a sex dichotomy in pro- and anti-inflammatory response underlies the sex-specific chronic HIE outcomes, and an enhanced neurogenesis in females also contribute to the sex difference.


Subject(s)
Brain/immunology , Hypoxia-Ischemia, Brain/immunology , Inflammation/immunology , Animals , Brain/pathology , CX3C Chemokine Receptor 1/analysis , CX3C Chemokine Receptor 1/immunology , Chronic Disease , Cytokines/blood , Cytokines/immunology , Female , Hypoxia-Ischemia, Brain/blood , Hypoxia-Ischemia, Brain/complications , Hypoxia-Ischemia, Brain/pathology , Inflammation/blood , Inflammation/complications , Inflammation/pathology , Lectins, C-Type/analysis , Lectins, C-Type/immunology , Leukocytes/immunology , Leukocytes/pathology , Male , Mannose Receptor , Mannose-Binding Lectins/analysis , Mannose-Binding Lectins/immunology , Mice, Inbred C57BL , Microglia/immunology , Microglia/pathology , Receptors, Cell Surface/analysis , Receptors, Cell Surface/immunology , Sex Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...