Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
2.
Elife ; 92020 08 03.
Article in English | MEDLINE | ID: mdl-32744503

ABSTRACT

Parasitic helminths use two benzoquinones as electron carriers in the electron transport chain. In normoxia, they use ubiquinone (UQ), but in anaerobic conditions inside the host, they require rhodoquinone (RQ) and greatly increase RQ levels. We previously showed the switch from UQ to RQ synthesis is driven by a change of substrates by the polyprenyltransferase COQ-2 (Del Borrello et al., 2019; Roberts Buceta et al., 2019); however, the mechanism of substrate selection is not known. Here, we show helminths synthesize two coq-2 splice forms, coq-2a and coq-2e, and the coq-2e-specific exon is only found in species that synthesize RQ. We show that in Caenorhabditis elegans COQ-2e is required for efficient RQ synthesis and survival in cyanide. Importantly, parasites switch from COQ-2a to COQ-2e as they transit into anaerobic environments. We conclude helminths switch from UQ to RQ synthesis principally via changes in the alternative splicing of coq-2.


Subject(s)
Alkyl and Aryl Transferases/genetics , Alternative Splicing , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans/genetics , Ubiquinone/analogs & derivatives , Alkyl and Aryl Transferases/metabolism , Animals , Caenorhabditis elegans/enzymology , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , Nematoda/enzymology , Nematoda/genetics , Nematoda/metabolism , Oxidation-Reduction , Platyhelminths/enzymology , Platyhelminths/genetics , Platyhelminths/metabolism , Ubiquinone/metabolism
3.
J Biol Chem ; 294(28): 11047-11053, 2019 07 12.
Article in English | MEDLINE | ID: mdl-31177094

ABSTRACT

A key metabolic adaptation of some species that face hypoxia as part of their life cycle involves an alternative electron transport chain in which rhodoquinone (RQ) is required for fumarate reduction and ATP production. RQ biosynthesis in bacteria and protists requires ubiquinone (Q) as a precursor. In contrast, Q is not a precursor for RQ biosynthesis in animals such as parasitic helminths, and most details of this pathway have remained elusive. Here, we used Caenorhabditis elegans as a model animal to elucidate key steps in RQ biosynthesis. Using RNAi and a series of C. elegans mutants, we found that arylamine metabolites from the kynurenine pathway are essential precursors for RQ biosynthesis de novo Deletion of kynu-1, encoding a kynureninase that converts l-kynurenine (KYN) to anthranilic acid (AA) and 3-hydroxykynurenine (3HKYN) to 3-hydroxyanthranilic acid (3HAA), completely abolished RQ biosynthesis but did not affect Q levels. Deletion of kmo-1, which encodes a kynurenine 3-monooxygenase that converts KYN to 3HKYN, drastically reduced RQ but not Q levels. Knockdown of the Q biosynthetic genes coq-5 and coq-6 affected both Q and RQ levels, indicating that both biosynthetic pathways share common enzymes. Our study reveals that two pathways for RQ biosynthesis have independently evolved. Unlike in bacteria, where amination is the last step in RQ biosynthesis, in worms the pathway begins with the arylamine precursor AA or 3HAA. Because RQ is absent in mammalian hosts of helminths, inhibition of RQ biosynthesis may have potential utility for targeting parasitic infections that cause important neglected tropical diseases.


Subject(s)
Caenorhabditis elegans/metabolism , Kynurenine/metabolism , Ubiquinone/analogs & derivatives , Animals , Caenorhabditis elegans Proteins/antagonists & inhibitors , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Chromatography, High Pressure Liquid , Hydrolases/antagonists & inhibitors , Hydrolases/genetics , Hydrolases/metabolism , Kynurenine 3-Monooxygenase/antagonists & inhibitors , Kynurenine 3-Monooxygenase/genetics , Kynurenine 3-Monooxygenase/metabolism , Mass Spectrometry , Methyltransferases/antagonists & inhibitors , Methyltransferases/genetics , Methyltransferases/metabolism , Mitochondria/metabolism , RNA Interference , RNA, Double-Stranded/metabolism , Subcutaneous Tissue/metabolism , Ubiquinone/analysis , Ubiquinone/biosynthesis , Ubiquinone/metabolism
4.
Free Radic Biol Med ; 108: 174-182, 2017 07.
Article in English | MEDLINE | ID: mdl-28347729

ABSTRACT

Selenoprotein T (SELENOT) is an endoplasmatic reticulum (ER)-associated redoxin that contains the amino acid selenocysteine (Sec, U) within a CXXU motif within a thioredoxin-like fold. Its precise function in multicellular organisms is not completely understood although it has been shown in mammals to be involved in Ca2+ homeostasis, antioxidant and neuroendocrine functions. Here, we use the model organism C. elegans to address SELENOT function in a whole organism throughout its life cycle. C. elegans possess two genes encoding SELENOT protein orthologues (SELT-1.1 and SELT-1.2), which lack Sec and contain the CXXC redox motif instead. Our results show that a Sec→Cys replacement and a gene duplication were two major evolutionary events that occurred in the nematode lineage. We find that worm SELT-1.1 localizes to the ER and is expressed in different cell types, including the nervous system. In contrast, SELT-1.2 exclusively localizes in the cytoplasm of the AWB neurons. We find that selt-1.1 and selt-1.2 single mutants as well as the double mutant are viable, but the selt-1.1 mutant is compromised under rotenone-induced oxidative stress. We demonstrate that selt-1.1, but not selt-1.2, is required for avoidance to the bacterial pathogens Serratia marcescens and Pseudomonas aeruginosa. Aversion to the noxious signal 2-nonanone is also significantly impaired in selt-1.1, but not in selt-1.2 mutant animals. Our results suggest that selt-1.1 would be a redox transducer required for nociception and optimal organismal fitness. The results highlight C. elegans as a valuable model organism to study SELENOT-dependent processes.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/immunology , Endoplasmic Reticulum/metabolism , Neurons/metabolism , Pseudomonas Infections/immunology , Pseudomonas aeruginosa/immunology , Selenoproteins/metabolism , Serratia Infections/immunology , Serratia marcescens/immunology , Animals , Caenorhabditis elegans Proteins/genetics , Cells, Cultured , Cysteine/genetics , Gene Duplication , Immunity, Innate , Ketones/administration & dosage , Life Cycle Stages , Mutation/genetics , Nociception , Oxidative Stress , Protein Transport , Selenoproteins/genetics
5.
Molecules ; 20(7): 11793-807, 2015 Jun 26.
Article in English | MEDLINE | ID: mdl-26132905

ABSTRACT

Parasitic flatworms cause serious infectious diseases that affect humans and livestock in vast regions of the world, yet there are few effective drugs to treat them. Thioredoxin glutathione reductase (TGR) is an essential enzyme for redox homeostasis in flatworm parasites and a promising pharmacological target. We purified to homogeneity and characterized the TGR from the tapeworm Mesocestoides vogae (syn. M. corti). This purification revealed absence of conventional TR and GR. The glutathione reductase activity of the purified TGR exhibits a hysteretic behavior typical of flatworm TGRs. Consistently, M. vogae genome analysis revealed the presence of a selenocysteine-containing TGR and absence of conventional TR and GR. M. vogae thioredoxin and glutathione reductase activities were inhibited by 3,4-bis(phenylsulfonyl)-1,2,5-oxadiazole N2-oxide (VL16E), an oxadiazole N-oxide previously identified as an inhibitor of fluke and tapeworm TGRs. Finally, we show that mice experimentally infected with M. vogae tetrathyridia and treated with either praziquantel, the reference drug for flatworm infections, or VL16E exhibited a 28% reduction of intraperitoneal larvae numbers compared to vehicle treated mice. Our results show that oxadiazole N-oxide is a promising chemotype in vivo and highlights the convenience of M. vogae as a model for rapid assessment of tapeworm infections in vivo.


Subject(s)
Cestoda/drug effects , Cestode Infections/parasitology , Multienzyme Complexes/metabolism , NADH, NADPH Oxidoreductases/metabolism , Oxadiazoles/pharmacology , Amino Acid Sequence , Animals , Cestoda/metabolism , Mesocestoides , Mice , Molecular Sequence Data , Multienzyme Complexes/chemistry , NADH, NADPH Oxidoreductases/chemistry , Sequence Homology, Amino Acid
6.
RNA ; 20(7): 1023-34, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24817701

ABSTRACT

Selenocysteine (Sec) is encoded by an UGA codon with the help of a SECIS element present in selenoprotein mRNAs. SECIS-binding protein (SBP2/SCBP-2) mediates Sec insertion, but the roles of its domains and the impact of its deficiency on Sec insertion are not fully understood. We used Caenorhabditis elegans to examine SBP2 function since it possesses a single selenoprotein, thioredoxin reductase-1 (TRXR-1). All SBP2 described so far have an RNA-binding domain (RBD) and a Sec-incorporation domain (SID). Surprisingly, C. elegans SBP2 lacks SID and consists only of an RBD. An sbp2 deletion mutant strain ablated Sec incorporation demonstrating SBP2 essentiality for Sec incorporation. Further in silico analyses of nematode genomes revealed conservation of SBP2 lacking SID and maintenance of Sec incorporation linked to TRXR-1. Remarkably, parasitic plant nematodes lost the ability to incorporate Sec, but retained SecP43, a gene associated with Sec incorporation. Interestingly, both selenophosphate synthetase (SPS) genes are absent in plant parasitic nematodes, while only Cys-containing SPS2 is present in Sec-incorporating nematodes. Our results indicate that C. elegans and the nematode lineage provide key insights into Sec incorporation and the evolution of Sec utilization trait, selenoproteomes, selenoproteins, and Sec residues. Finally, our study provides evidence of noncanonical translation initiation in C. elegans, not previously known for this well-established animal model.


Subject(s)
Adaptation, Biological/genetics , Caenorhabditis elegans/metabolism , Evolution, Molecular , Gene Silencing , Metabolic Networks and Pathways/genetics , Selenocysteine/metabolism , Amino Acid Sequence , Animals , Base Pairing , Base Sequence , Caenorhabditis elegans/genetics , Codon, Terminator , Molecular Sequence Data , Phylogeny , RNA, Transfer/genetics , RNA, Transfer/metabolism , Selenocysteine/genetics , Selenoproteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...