Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 15247, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956332

ABSTRACT

A Cu-6at%Ag cast alloy was deformed by means of high-pressure torsion to different applied strain levels until a steady-state regime is reached. The continuous structural refinement is attended by the successive dissolution of the Ag precipitates in the Cu matrix. The results show that the Ag regions need to fall below a phase size of ~ 5 nm to fully dissolve. Atomistic calculations indicate that the final dissolution can be explained based on the enthalpy difference between the solid solution and layered systems which are in between the coherent and semi-coherent structure. These findings are supported by detailed microstructural investigations.

2.
Nanomaterials (Basel) ; 13(9)2023 Apr 25.
Article in English | MEDLINE | ID: mdl-37177009

ABSTRACT

Voids in face-centered cubic (fcc) metals are commonly assumed to form via the aggregation of vacancies; however, the mechanisms of vacancy clustering and diffusion are not fully understood. In this study, we use computational modeling to provide a detailed insight into the structures and formation energies of primary vacancy clusters, mechanisms and barriers for their migration in bulk copper, and how these properties are affected at simple grain boundaries. The calculations were carried out using embedded atom method (EAM) potentials and density functional theory (DFT) and employed the site-occupation disorder code (SOD), the activation relaxation technique nouveau (ARTn) and the knowledge led master code (KLMC). We investigate stable structures and migration paths and barriers for clusters of up to six vacancies. The migration of vacancy clusters occurs via hops of individual constituent vacancies with di-vacancies having a significantly smaller migration barrier than mono-vacancies and other clusters. This barrier is further reduced when di-vacancies interact with grain boundaries. This interaction leads to the formation of self-interstitial atoms and introduces significant changes into the boundary structure. Tetra-, penta-, and hexa-vacancy clusters exhibit increasingly complex migration paths and higher barriers than smaller clusters. Finally, a direct comparison with the DFT results shows that EAM can accurately describe the vacancy-induced relaxation effects in the Cu bulk and in grain boundaries. Significant discrepancies between the two methods were found in structures with a higher number of low-coordinated atoms, such as penta-vacancies and di-vacancy absortion by grain boundary. These results will be useful for modeling the mechanisms of diffusion of complex defect structures and provide further insights into the structural evolution of metal films under thermal and mechanical stress.

3.
Adv Mater ; 35(28): e2211796, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37030971

ABSTRACT

The embrittlement of metallic alloys by liquid metals leads to catastrophic material failure and severely impacts their structural integrity. The weakening of grain boundaries (GBs) by the ingress of liquid metal and preceding segregation in the solid are thought to promote early fracture. However, the potential of balancing between the segregation of cohesion-enhancing interstitial solutes and embrittling elements inducing GB de-cohesion is not understood. Here, the mechanisms of how boron segregation mitigates the detrimental effects of the prime embrittler, zinc, in a Σ5 [001] tilt GB in α-Fe (4 at.% Al) is unveiled. Zinc forms nanoscale segregation patterns inducing structurally and compositionally complex GB states. Ab initio simulations reveal that boron hinders zinc segregation and compensates for the zinc-induced loss in GB cohesion. The work sheds new light on how interstitial solutes intimately modify GBs, thereby opening pathways to use them as dopants for preventing disastrous material failure.


Subject(s)
Boron , Iron , Metals , Zinc , Alloys
4.
Commun Mater ; 4(1): 11, 2023.
Article in English | MEDLINE | ID: mdl-38665393

ABSTRACT

Nanocrystalline alloy thin films offer a variety of attractive properties, such as high hardness, strength and wear resistance. A disadvantage is the large residual stresses that result from their fabrication by deposition, and subsequent susceptibility to defects. Here, we use experimental and modelling methods to understand the impact of minority element concentration on residual stresses that emerge after deposition in a tungsten-titanium film with different titanium concentrations. We perform local residual stress measurements using micro-cantilever samples and employ machine learning for data extraction and stress prediction. The results are correlated with accompanying microstructure and elemental analysis as well as atomistic modelling. We discuss how titanium enrichment significantly affects the stress stored in the nanocrystalline thin film. These findings may be useful for designing stable nanocrystalline thin films.

5.
J Phys Chem C Nanomater Interfaces ; 126(17): 7696-7703, 2022 May 05.
Article in English | MEDLINE | ID: mdl-35558823

ABSTRACT

In BiFeO3 (BFO), Bi2O3 (BO) is a known secondary phase, which can appear under certain growth conditions. However, BO is not just an unwanted parasitic phase but can be used to create the super-tetragonal BFO phase in films on substrates, which would otherwise grow in the regular rhombohedral phase (R-phase). The super-tetragonal BFO phase has the advantage of a much larger ferroelectric polarization of 130-150 µC/cm2, which is around 1.5 times the value of the rhombohedral phase with 80-100 µC/cm2. Here, we report that the solubility of Ca, which is a common dopant of bismuth ferrite materials to tune their properties, is significantly lower in the secondary BO phase than in the observed R-phase BFO. Starting from the film growth, this leads to completely different Ca concentrations in the two phases. We show this with advanced analytical transmission electron microscopy techniques and confirm the experimental results with density functional theory (DFT) calculations. At the film's fabrication temperature, caused by different solubilities, about 50 times higher Ca concentration is expected in the BFO phase than in the secondary one. Depending on the cooling rate after fabrication, this can further increase since a larger Ca concentration difference is expected at lower temperatures. When fabricating functional devices using Ca doping and the secondary BO phase, the difference in solubility must be considered because, depending on the ratio of the BO phase, the Ca concentration in the BFO phase can become much higher than intended. This can be critical for the intended device functionality because the Ca concentration strongly influences and modifies the BFO properties.

6.
Materials (Basel) ; 13(10)2020 May 15.
Article in English | MEDLINE | ID: mdl-32429213

ABSTRACT

Fundamental understanding of H localization in steel is an important step towards theoretical descriptions of hydrogen embrittlement mechanisms at the atomic level. In this paper, we investigate the interaction between atomic H and defects in ferromagnetic body-centered cubic (bcc) iron using density functional theory (DFT) calculations. Hydrogen trapping profiles in the bulk lattice, at vacancies, dislocations and grain boundaries (GBs) are calculated and used to evaluate the concentrations of H at these defects as a function of temperature. The results on H-trapping at GBs enable further investigating H-enhanced decohesion at GBs in Fe. A hierarchy map of trapping energies associated with the most common crystal lattice defects is presented and the most attractive H-trapping sites are identified.

7.
ACS Appl Mater Interfaces ; 12(10): 12264-12274, 2020 Mar 11.
Article in English | MEDLINE | ID: mdl-32058684

ABSTRACT

Segregation is a crucial phenomenon, which has to be considered in functional material design. Segregation processes in perovskite oxides have been the subject of ongoing scientific interest, since they can lead to a modification of properties and a loss of functionality. Many studies in oxide thin films have focused on segregation toward the surface using a variety of surface-sensitive analysis techniques. In contrast, here we report a Ca segregation toward an in-plane compressively strained heterostructure interface in a Ca- and Mn-codoped bismuth ferrite film. We are using advanced transmission electron microscopy techniques, X-ray photoelectron spectroscopy, and density functional theory (DFT) calculations. Ca segregation is found to trigger atomic and electronic structure changes at the interface. This includes the reduction of the interface strain according to the Ca concentration gradient, interplanar spacing variations, and oxygen vacancies at the interface. The experimental results are supported by DFT calculations, which explore two segregation scenarios, i.e., one without oxygen vacancies and Fe oxidation from 3+ to 4+ and one with vacancies for charge compensation. Comparison with electron energy loss spectroscopy (EELS) measurements confirms the second segregation scenario with vacancy formation. The findings contribute to the understanding of segregation and indicate promising effects of a Ca-rich buffer layer in this heterostructure system.

8.
Materials (Basel) ; 12(7)2019 Apr 06.
Article in English | MEDLINE | ID: mdl-30959910

ABSTRACT

Mechanical properties of FeCrMn-based steels are of major importance for practical applications. In this work, we investigate mechanical properties of disordered paramagnetic fcc FeCr 10 ⁻ 16 Mn 12 ⁻ 32 alloys using density functional theory. The effects of composition and temperature changes on the magnetic state, elastic properties and stacking fault energies of the alloys are studied. Calculated dependencies of the lattice and elastic constants are used to evaluate the effect of the solid solution strengthening by Mn and Cr using a modified Labusch-Nabarro model and a model for concentrated alloys. The effect of Cr and Mn alloying on the stacking fault energies is calculated and discussed in connection to possible deformation mechanisms.

9.
Sci Rep ; 5: 13802, 2015 Sep 02.
Article in English | MEDLINE | ID: mdl-26328541

ABSTRACT

Controlling the growth of eutectic Si and thereby modifying the eutectic Si from flake-like to fibrous is a key factor in improving the properties of Al-Si alloys. To date, it is generally accepted that the impurity-induced twinning (IIT) mechanism and the twin plane re-entrant edge (TPRE) mechanism as well as poisoning of the TPRE mechanism are valid under certain conditions. However, IIT, TPRE or poisoning of the TPRE mechanism cannot be used to interpret all observations. Here, we report an atomic-scale experimental and theoretical investigation on the roles of Eu during the growth of eutectic Si in Al-Si alloys. Both experimental and theoretical investigations reveal three different roles: (i) the adsorption at the intersection of Si facets, inducing IIT mechanism, (ii) the adsorption at the twin plane re-entrant edge, inducing TPRE mechanism or poisoning of the TPRE mechanism, and (iii) the segregation ahead of the growing Si twins, inducing a solute entrainment within eutectic Si. This investigation not only demonstrates a direct experimental support to the well-accepted poisoning of the TPRE and IIT mechanisms, but also provides a full picture about the roles of Eu atoms during the growth of eutectic Si, including the solute entrainment within eutectic Si.

10.
J Am Chem Soc ; 133(9): 3056-62, 2011 Mar 09.
Article in English | MEDLINE | ID: mdl-21309570

ABSTRACT

During the last years, self-assembled organic nanostructures have been recognized as a proper fundament for several electrical and optical applications. In particular, phenylenes deposited on muscovite mica have turned out to be an outstanding material combination. They tend to align parallel to each other forming needlelike structures. In that way, they provide the key for macroscopic highly polarized emission, waveguiding, and lasing. The resulting anisotropy has been interpreted so far by an induced dipole originating from the muscovite mica substrate. Based on a combined experimental and theoretical approach, we present an alternative growth model being able to explain molecular adsorption on sheet silicates in terms of molecule-surface interactions only. By a comprehensive comparison between experiments and simulations, we demonstrate that geometrical changes in the substrate surface or molecule lead to different molecular adsorption geometries and needle directions which can be predicted by our growth model.

11.
Phys Chem Chem Phys ; 13(9): 3604-11, 2011 Mar 07.
Article in English | MEDLINE | ID: mdl-21279208

ABSTRACT

Well-ordered and oriented monolayers of conjugated organic molecules can offer new perspectives on surface bonding. We will demonstrate the importance of the momentum distribution, or symmetry, of the adsorbate molecules' π orbitals in relation to the states available for hybridization at the metal surface. Here, the electronic band structure of the first monolayer of sexiphenyl on Cu(110) has been examined in detail with angle-resolved ultraviolet photoemission spectroscopy over a large momentum range and will be compared to measurements of a multilayer thin film and to density functional calculations. In the monolayer, the one-dimensional intramolecular band structure can still be recognized, allowing an accurate determination of orbital modification upon bonding and the relative energetic positions of the electronic levels. It is seen that the character of the molecular π orbitals is largely maintained despite strong mixing between Cu and molecular states and that the lowest unoccupied molecular orbital (LUMO) is filled by hybridization with Cu s,p states rather than through a charge transfer process. It is also shown that the momentum distribution of the substrate states involved and the periodicity of the molecular overlayer play a large role in the final E(k) distribution of the hybrid states. The distinct momentum distribution of the LUMO, interacting with the Cu substrate s,p valence bands around the gap in the surface projection of the bulk band structure, make this system a particularly illustrative example of momentum resolved hybridization. This system demonstrates that, for hybridization to occur, not only do states require overlap in energy and space, but also in momentum.

12.
J Chem Theory Comput ; 6(11): 3481-3489, 2010 Nov 09.
Article in English | MEDLINE | ID: mdl-21072328

ABSTRACT

The electronic structure of metal-organic interfaces is of paramount importance for the properties of organic electronic and single-molecule devices. Here, we use so-called orbital overlap populations derived from slab-type band-structure calculations to analyze the covalent contribution to the bonding between an adsorbate layer and a metal. Using two prototypical molecules, the strong acceptor 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ) on Ag(111) and the strong donor 1H,1'H-[4,4']bipyridinylidene (HV0) on Au(111), we present overlap populations as particularly versatile tools for describing the metal-organic interaction. Going beyond traditional approaches, in which overlap populations are represented in an atomic orbital basis, we also explore the use of a molecular orbital basis to gain significant additional insight. On the basis of the derived quantities, it is possible to identify the parts of the molecules responsible for the bonding and to analyze which of the molecular orbitals and metal bands most strongly contribute to the interaction and where on the energy scale they interact in bonding or antibonding fashion.

13.
ACS Nano ; 4(11): 6735-46, 2010 Nov 23.
Article in English | MEDLINE | ID: mdl-21047121

ABSTRACT

The electronic structure of mixed self-assembled monolayers (SAMs) on Au(111) surfaces is modeled using slab-type density-functional theory calculations. The studied molecules have a dipolar character induced by polar and electron donating or accepting tail-group substituents. The resulting electronic structure of mixed layers is found to differ qualitatively from a simple superposition of those of the respective pure layers. Specifically, the positions of the frontier electronic states are shifted relative to the metal Fermi level, with the sign and magnitude of that shift depending on the dipole moment of the molecules and the mixing ratio in the film. This appears counterintuitive considering previous investigations, in which it has been shown that, for densely packed layers, tail-group substituents have no impact on the interfacial energy-level alignment. The seeming contradiction can be lifted by considering the local electrostatic interactions within the films in both mixed and homogeneous monolayers. Beyond that, we show that mixed SAMs provide an efficient tool for continuously tuning substrate work functions over a range that far exceeds that accessible by merely changing the coverage of homogeneous layers, with the net effect depending linearly on the mixing ratio in agreement with recent experimental findings.

14.
Phys Rev Lett ; 104(19): 195503, 2010 May 14.
Article in English | MEDLINE | ID: mdl-20866976

ABSTRACT

Despite exhibiting the highest melting point of all metals, the technological use of tungsten is hampered by its room-temperature brittleness. Alloying with Re significantly ductilizes the material which has been assigned to modified properties of the 1/2(111) screw dislocation. Using density functional theory, we show that alloying induces a transition from a symmetric to an asymmetric core and a reduction in Peierls stress. This combination ductilizes the alloy as the number of available slip planes is increased and the critical stress needed to start plastic deformation is lowered.

15.
Nano Lett ; 9(7): 2559-64, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19505133

ABSTRACT

The concept of doping inorganic semiconductors enabled their successful application in electronic devices. Furthermore, the discovery of metal-like conduction in doped polymers started the entire field of organic electronics. In the present theoretical study, we extend the concept of doping to monomolecular wires suspended between two metal electrodes. Upon doping, the conductivity of representative model systems is found to increase by 2 orders of magnitude. More importantly, by providing a thorough understanding of the underlying mechanisms, our results pave the way for the development of novel molecular components envisioned as functional units in nanoscale devices.


Subject(s)
Electronics , Models, Theoretical , Nanowires/chemistry , Chlorides/chemistry , Electric Conductivity , Ions , Materials Testing , Molecular Structure , Sodium/chemistry
16.
Acc Chem Res ; 41(6): 721-9, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18507404

ABSTRACT

Self-assembled monolayers (SAMs) of organic molecules generally modify the surface properties when covalently linked to substrates. In organic electronics, SAMs are used to fine-tune the work functions of inorganic electrodes, thereby minimizing the energy barriers for injection or extraction of charge carriers into or out of an active organic layer; a detailed understanding of the interface energetics on an atomistic scale is required to design improved interfaces. In the field of molecular electronics, the SAM itself (or, in some cases, one or a few molecules) carries the entire device functionality; the interface then essentially becomes the device and the alignment of the molecular energy levels with those of the electrodes defines the overall charge-transport characteristics. This Account provides a review of recent theoretical studies of the interface energetics for SAMs of π-conjugated molecules covalently linked to noble metal surfaces. After a brief description of the electrostatics of dipole layers at metal/molecule interfaces, the results of density functional theory calculations are discussed for SAMs of representative conjugated thiols on Au(111). Particular emphasis is placed on the modification of the work function of the clean metal surface upon SAM formation, the alignment of the energy levels within the SAM with the metal Fermi level, and the connection between these two quantities. To simplify the discussion, we partition the description of the metal/SAM system into two parts by considering first an isolated free-standing layer of molecules and then the system obtained after molecule-metal bond formation. From an electrostatic standpoint, both the isolated monolayer and the metal-molecule bonds can be cast in the form of dipole layers, which lead to steps in the electrostatic potential energy at the interface. While the step due to the isolated molecular layer impacts only the work function of the SAM-covered surface, the step arising from the bond formation influences both the work function and the alignment of the electronic levels in the SAM with respect to the metal Fermi energy. Interestingly, headgroup substitutions at the far ends of the molecules forming the SAM are electrostatically decoupled from the metal-thiol interface in densely packed SAMs; as a result, the nature of these substituents and the binding chemistry between the metal and the molecules are two largely unrelated handles with which to independently tune the work function and the level alignment. The establishment of a comprehensive atomistic picture regarding the impact of the individual components of a SAM on the interface energetics at metal/organic junctions paves the way for clear guidelines to design improved functional interfaces in organic and molecular electronics.

17.
Langmuir ; 24(2): 474-82, 2008 Jan 15.
Article in English | MEDLINE | ID: mdl-18072797

ABSTRACT

Conjugated molecules with a saturated alkyl linker between a thiol docking group and the pi-conjugated core have been shown to form self-assembled monolayers (SAMs) with a high degree of long-range order and uniformity. Additionally, pronounced odd-even effects have been observed in a number of properties characterizing these SAMs. We focus on omega-(biphenyl-4-yl)alkanethiols with n = 0-6 -(CH2)n- units deposited on Au(111) and investigate the microscopic origin of these odd-even effects in terms of the local sulfur-gold bonding geometry by employing first-principles calculations. An additional structural parameter, the torsion angle between the two phenyl rings in the biphenyl moiety, is identified and its relation to the experimentally observed odd-even effects is discussed. More importantly, we address relevant quantities for the application of these SAMs in molecular electronic devices, in particular, the modification of the work function of the underlying metal substrate and the energetic alignment of the molecular orbitals in the SAM with the Fermi level. While no clear trend emerges for the former, we find pronounced odd-even effects for the latter. Furthermore, the insertion of a single methylene unit between the biphenyl core and the thiol appears to largely decouple the valence electronic systems of the pi-conjugated segment and the gold substrate. Our results thus provide a solid theoretical basis for the interface energetics in this important class of systems.

18.
Nano Lett ; 7(4): 932-40, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17326692

ABSTRACT

Self-assembled monolayers (SAMs) of organic molecules provide an important tool to tune the work function of electrodes in plastic electronics and significantly improve device performance. Also, the energetic alignment of the frontier molecular orbitals in the SAM with the Fermi energy of a metal electrode dominates charge transport in single-molecule devices. On the basis of first-principles calculations on SAMs of pi-conjugated molecules on noble metals, we provide a detailed description of the mechanisms that give rise to and intrinsically link these interfacial phenomena at the atomic level. The docking chemistry on the metal side of the SAM determines the level alignment, while chemical modifications on the far side provide an additional, independent handle to modify the substrate work function; both aspects can be tuned over several eV. The comprehensive picture established in this work provides valuable guidelines for controlling charge-carrier injection in organic electronics and current-voltage characteristics in single-molecule devices.


Subject(s)
Crystallization/methods , Electrochemistry/methods , Electronics , Metals/chemistry , Models, Chemical , Nanostructures/chemistry , Nanotechnology/methods , Computer Simulation , Macromolecular Substances/chemistry , Microelectrodes , Models, Molecular , Molecular Conformation , Nanostructures/ultrastructure , Particle Size , Surface Properties
19.
Phys Rev Lett ; 99(25): 256801, 2007 Dec 21.
Article in English | MEDLINE | ID: mdl-18233542

ABSTRACT

Interface energetics are of fundamental importance in organic and molecular electronics. By combining complementary experimental techniques and first-principles calculations, we resolve the complex interplay among several interfacial phenomena that collectively determine the electronic structure of the strong electron acceptor tetrafluoro-tetracyanoquinodimethane chemisorbed on copper. The combination of adsorption-induced geometric distortion of the molecules, metal-to-molecule charge transfer, and molecule-to-metal back transfer leads to a net increase of the metal work function.

20.
Small ; 2(12): 1468-75, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17193008

ABSTRACT

Density functional theory (DFT) calculations based on band structure are used to investigate the electromechanical properties of a molecular junction consisting of a dithiolbenzene molecule sandwiched between two gold slabs. This represents a prototypical system for the field of molecular electronics; such a system has previously been studied in break-junction measurements and electron-transport calculations. The stretching and breaking behavior of the junction is analyzed for different geometric conformations, and it is found that the breakage occurs through dissociation of one of the sulfur-gold bonds with a maximum force of 1.25 nN. The molecular electronic states shift during stretching, and, at the point of highest stress in the junction, the highest occupied molecular orbital (HOMO) of the molecule is located exactly at the Fermi level.


Subject(s)
Benzene/chemistry , Gold/chemistry , Disulfides , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...