Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Front Pain Res (Lausanne) ; 2: 695962, 2021.
Article in English | MEDLINE | ID: mdl-35295409

ABSTRACT

Mu opioid receptor (MOPr) agonists are well-known and frequently used clinical analgesics but are also rewarding due to their highly addictive and often abusive properties. This may lead to opioid use disorder (OUD) a disorder that effects millions of people worldwide. Therefore, novel compounds are urgently needed to treat OUD. As opioids are effective analgesics and OUD often occurs in conjunction with chronic pain, these novel compounds may be opioids, but they must have a low abuse liability. This could be mediated by diminishing or slowing blood-brain barrier transport, slowing target receptor binding kinetics, and showing a long half-life. NKTR-181 is a PEGylated oxycodol and a MOPr agonist that has slowed blood-brain barrier transport, a long half-life, and diminished likeability in clinical trials. In this study, we examined the signaling and behavioral profile of NKTR-181 in comparison with oxycodone to determine whether further therapeutic development of this compound may be warranted. For this preclinical study, we used a number of in vitro and in vivo assays. The signaling profile of NKTR-181 was determined by the electrophysiological assessment of MOPr-Ca2+ channel inhibition in the nociceptive neurons of rodent dorsal root ganglia. Heterologous cell-based assays were used to assess biased agonism and receptor trafficking. Different rodent behavioral models were used to define the NKTR-181-induced relief of effective and reflexive nociception and drug-seeking behavior as assessed by an intravenous self-administration (IVSA) of NKTR-181. We found that NKTR-181 and oxycodone are partial agonists in G-protein signaling and Ca2+ channel inhibition assays and promote limited MOPr desensitization. However, NKTR-181 inhibits Ca2+ channels by a different mechanism than oxycodone and induces a different pattern of arrestin recruitment. In addition, NKTR-181 has a slower receptor on-rate and a slower rate of Ca2+ channel coupling than oxycodone. This signaling profile is coupled with a slower onset of antinociception and limited drug-seeking behavior in comparison with oxycodone. Together with its known long half-life and slow blood-brain barrier transport, these data suggest that NKTR-181 could be further studied as a pharmacotherapeutic treatment modality for OUD.

2.
eNeuro ; 7(5)2020.
Article in English | MEDLINE | ID: mdl-32859725

ABSTRACT

µ-Opioid receptors (MORs) are densely expressed in different brain regions known to mediate reward. One such region is the striatum where MORs are densely expressed, yet the role of these MOR populations in modulating reward is relatively unknown. We have begun to address this question by using a series of genetically engineered mice based on the Cre recombinase/loxP system to selectively delete MORs from specific neurons enriched in the striatum: dopamine 1 (D1) receptors, D2 receptors, adenosine 2a (A2a) receptors, and choline acetyltransferase (ChAT). We first determined the effects of each deletion on opioid-induced locomotion, a striatal and dopamine-dependent behavior. We show that MOR deletion from D1 neurons reduced opioid (morphine and oxycodone)-induced hyperlocomotion, whereas deleting MORs from A2a neurons resulted in enhanced opioid-induced locomotion, and deleting MORs from D2 or ChAT neurons had no effect. We also present the effect of each deletion on opioid intravenous self-administration. We first assessed the acquisition of this behavior using remifentanil as the reinforcing opioid and found no effect of genotype. Mice were then transitioned to oxycodone as the reinforcer and maintained here for 9 d. Again, no genotype effect was found. However, when mice underwent 3 d of extinction training, during which the drug was not delivered, but all cues remained as during the maintenance phase, drug-seeking behavior was enhanced when MORs were deleted from A2a or ChAT neurons. These findings show that these selective MOR populations play specific roles in reward-associated behaviors.


Subject(s)
Analgesics, Opioid , Receptors, Opioid, mu , Analgesics, Opioid/pharmacology , Animals , Mice , Morphine , Neurons , Receptors, Opioid, mu/genetics , Reward
3.
PLoS One ; 12(10): e0185796, 2017.
Article in English | MEDLINE | ID: mdl-28973019

ABSTRACT

The two highly homologous non-visual arrestins, beta-arrestin 1 and 2, are ubiquitously expressed in the central nervous system, yet knowledge of their disparate roles is limited. While beta-arrestin 2 (ßarr2) has been implicated in several aspects of reward-related learning and behavior, very little is known about the behavioral function of beta-arrestin 1 (ßarr1). Using mice lacking ßarr1, we focused on the role of this scaffolding and signal transduction protein in reward-motivated behaviors and in striatal glutamatergic function. We found that ßarr1 KO mice were both slower in acquiring cocaine self-administration and in extinguishing this behavior. They also showed deficits in learning tasks supported by a natural food reward, suggesting a general alteration in reward processing. We then examined glutamatergic synaptic strength in WT and KO medium spiny neurons (MSNs) of the Nucleus Accumbens (NAc) shell in naïve animals, and from those that underwent cocaine self-administration. An increase in the AMPA/NMDA (A/N) ratio and a relative lack of GluN2B-enriched NMDARs was found in naïve KO vs WT MSNs. Applying Lim Domain Kinase (LIMK1), the kinase that phosphorylates and inactivates cofilin, to these cells, showed that both ßarr1 and LIMK regulate the A/N ratio and GluN2B-NMDARs. Cocaine self-administration increased the A/N ratio and GluN2B-NMDARs in WT MSNs and, although the A/N ratio also increased in KO MSNs, this was accompanied by fewer GluN2B-NMDARs and an appearance of calcium-permeable AMPARs. Finally, to examine the consequences of reduced basal GluN2B-NMDARs in reward-processing seen in KO mice, we chronically infused ifenprodil, a GluN2B antagonist, into the NAc shell of WT mice. This intervention substantially reduced food-motivated behavior. Together these findings identify a previously unknown role of ßarr1 in regulating specific reward-motivated behaviors and glutamatergic function.


Subject(s)
Behavior, Animal/physiology , Learning/physiology , Receptors, N-Methyl-D-Aspartate/metabolism , Reward , beta-Arrestins/genetics , Animals , Behavior, Animal/drug effects , Central Nervous System Stimulants/administration & dosage , Cocaine/administration & dosage , Corpus Striatum/drug effects , Corpus Striatum/metabolism , Learning/drug effects , Mice , Mice, Knockout , Neurons/drug effects , Neurons/metabolism , Nucleus Accumbens/drug effects , Nucleus Accumbens/metabolism , Phosphorylation , Self Administration , beta-Arrestins/metabolism
4.
PLoS One ; 12(4): e0175090, 2017.
Article in English | MEDLINE | ID: mdl-28380057

ABSTRACT

Opiates, one of the oldest known drugs, are the benchmark for treating pain. Regular opioid exposure also induces euphoria making these compounds addictive and often misused, as shown by the current epidemic of opioid abuse and overdose mortalities. In addition to the effect of opioids on their cognate receptors and signaling cascades, these compounds also induce multiple adaptations at cellular and behavioral levels. As omega-3 polyunsaturated fatty acids (n-3 PUFAs) play a ubiquitous role in behavioral and cellular processes, we proposed that supplemental n-3 PUFAs, enriched in docosahexanoic acid (DHA), could offset these adaptations following chronic opioid exposure. We used an 8 week regimen of n-3 PUFA supplementation followed by 8 days of morphine in the presence of this diet. We first assessed the effect of morphine in different behavioral measures and found that morphine increased anxiety and reduced wheel-running behavior. These effects were reduced by dietary n-3 PUFAs without affecting morphine-induced analgesia or hyperlocomotion, known effects of this opiate acting at mu opioid receptors. At the cellular level we found that morphine reduced striatal DHA content and that this was reversed by supplemental n-3 PUFAs. Chronic morphine also increased glutamatergic plasticity and the proportion of Grin2B-NMDARs in striatal projection neurons. This effect was similarly reversed by supplemental n-3 PUFAs. Gene analysis showed that supplemental PUFAs offset the effect of morphine on genes found in neurons of the dopamine receptor 2 (D2)-enriched indirect pathway but not of genes found in dopamine receptor 1(D1)-enriched direct-pathway neurons. Analysis of the D2 striatal connectome by a retrogradely transported pseudorabies virus showed that n-3 PUFA supplementation reversed the effect of chronic morphine on the innervation of D2 neurons by the dorsomedial prefontal and piriform cortices. Together these changes outline specific behavioral and cellular effects of morphine that can be reduced or reversed by dietary n-3 PUFAs.


Subject(s)
Fatty Acids, Omega-3/pharmacology , Morphine/pharmacology , Animals , Anxiety/chemically induced , Corpus Striatum/chemistry , Drug Administration Schedule , Female , Frontal Lobe/chemistry , Lipids/analysis , Locomotion/drug effects , Male , Maze Learning/drug effects , Mice , Mice, Inbred C57BL , Morphine/administration & dosage , Morphine/antagonists & inhibitors , Motor Activity/drug effects , Real-Time Polymerase Chain Reaction , Receptors, Glutamate/analysis
SELECTION OF CITATIONS
SEARCH DETAIL