Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 31(14): 22284-22295, 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37475343

ABSTRACT

Angular momentum is an important physical property that plays a key role in light-matter interactions, such as spin-orbit interaction. Here, we investigate theoretically and experimentally the spin-orbit interaction between a circularly polarized optical (spin) and a transverse vortex acoustic wave (orbital) using Brillouin backscattering in a silica optical nanofiber. We specifically explore the state of polarization of Brillouin backscattering induced by the TR21 torso-radial vortex acoustic mode that carries an orbital angular momentum. Using a full-vectorial theoretical model, we predict and observe two operating regimes for which the backscattered Brillouin signal is either depolarized or circularly polarized, depending on the input pump polarization. We demonstrate that when the pump is circularly polarized and thus carries a spin angular momentum, the backscattered signal undergoes a handedness reversal of circular polarization due to opto-acoustic spin-orbit interaction and the conservation of overall angular momentum.

2.
Opt Express ; 31(13): 21542-21552, 2023 Jun 19.
Article in English | MEDLINE | ID: mdl-37381250

ABSTRACT

We investigate a novel distributed Brillouin optical time domain reflectometer (BOTDR) using standard telecommunication fibers based on single-photon avalanche diodes (SPADs) in gated mode, ν -BOTDR, with a range of 120 km and 10 m spatial resolution. We experimentally demonstrate the ability to perform a distributed temperature measurement, by detecting a hot spot at 100 km. Instead of using a frequency scan like conventional BOTDR, we use a frequency discriminator based on the slope of a fiber Bragg grating (FBG) to convert the count rate of the SPAD into a frequency shift. A procedure to take into account the FBG drift during the acquisition and perform sensitive and reliable distributed measurements is described. We also present the possibility to differentiate strain and temperature.

SELECTION OF CITATIONS
SEARCH DETAIL
...