Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 20(5)2020 Mar 10.
Article in English | MEDLINE | ID: mdl-32164377

ABSTRACT

Radiological monitoring is fundamental for compliance with radiological protection policies in the aftermath of radiological events, such as nuclear accidents, terrorism, and out-of-commission uranium mines. An effective strategy for radiation monitoring is to use radiation detectors coupled with Unmanned Aerial Vehicles (UAVs), enabling for quicker surveillance of large areas without involving the need of human presence in the target area. The main aim of this study was to formulate the parameters for a UAV flight strategy in preparation for future field measurements using Geiger-Muller Counters (GMC) and Cadmium Zinc Telluride (CZT) spectrometers. As a proof of concept, the prepared flight strategy will be used to survey out-of-commission uranium mines in northern Portugal. Procedures to assure the calibration of the CZT and verification of the GMCs were conducted, as well as a sensitivity analysis of the sensors considering different acquisition times, distance to source, and detector response time. This article reports specific parameters, such as UAV distance to ground, time of exposition, speed, and the methodology to perform the identification and calculate the activity of possible radioactive sources. An effective flight strategy is also presented, aiming to use radiation detectors coupled with UAVs to undertake extensive monitoring of areas with enhanced levels of environmental radiation, which is of prime importance due to the lasting hazardous effects of enhanced environmental radiation in the nearby ecosystem and population.


Subject(s)
Biosensing Techniques , Cadmium/chemistry , Radiation Monitoring/instrumentation , Radiation Monitoring/methods , Radiometry , Remote Sensing Technology , Tellurium/chemistry , Zinc/chemistry , Air Pollutants, Radioactive/analysis , Calibration , Ecosystem , Humans , Portugal , Radiography
2.
Phys Med ; 71: 53-61, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32088565

ABSTRACT

PURPOSE: To assess out-of-field doses in radiotherapy treatments of paediatric patients, using Monte Carlo methods to implement a new model of the linear accelerator validated against measurements and developing a voxelized anthropomorphic paediatric phantom. METHODS: CT images of a physical anthropomorphic paediatric phantom were acquired and a dosimetric planning using a TPS was obtained. The CT images were used to perform the voxelization of the physical phantom using the ImageJ software and later implemented in MCNP. In order to validate the Monte Carlo model, dose measurements of the 6 MV beam and Linac with 120 MLC were made in a clinical setting, using ionization chambers and a water phantom. Afterwards TLD measurements in the physical anthropomorphic phantom were performed in order to assess the out-of-field doses in the eyes, thyroid, c-spine, heart and lungs. RESULTS: The Monte Carlo model was validated for in-field and out-of-field doses with average relative differences below 3%. The average relative differences between TLD measurements and Monte Carlo is 14,3% whilst the average relative differences between TLD and TPS is 55,8%. Moreover, organs up to 22.5 cm from PTV center show TLD and MCNP6 relative differences and TLD and TPS relative differences up to 21.2% and 92.0%, respectively. CONCLUSIONS: Our study provides a novel model that could be used in clinical research, namely in dose evaluation outside the treatment fields. This is particularly relevant, especially in pediatric patients, for studying new radiotherapy treatment techniques, since it can be used to estimate the development of secondary tumours.


Subject(s)
Monte Carlo Method , Neoplasms/diagnostic imaging , Neoplasms/radiotherapy , Particle Accelerators , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy/methods , Thermoluminescent Dosimetry , Algorithms , Child, Preschool , Computer Simulation , Humans , Phantoms, Imaging , Radiometry , Radiotherapy Dosage , Software , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL
...