Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Poult Sci ; 99(12): 6737-6744, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33248589

ABSTRACT

This study investigated the effect of feed and water access time on yolk sac utilization and subsequent broiler live performance. Hatching eggs were collected from commercial flocks of Ross 308 breeders at 35 and 39 wk of age in experiments 1 and 2, respectively. Chicks already out of their shells that still had some dampness on their down were removed, recorded, feather-sexed, and weighed at 488 h of incubation in both experiments. Chicks were weighed individually and received feed and water at 2 (immediate feed; IF), 8, 12, 16, 20, 24, 28, and 32 h after hatching (488 h) in experiments 1 and 2 (IF) and at 24, 26, 28, 32, 36, and 40 h after hatching in experiment 2. The residual yolk sac weight was determined at 32 and 40 h after hatching (day 0) in all groups in experiments 1 and 2, respectively. Feed consumption and BW were recorded at 7, 14, 21, and 35 d and at the same age relative to placement on feed and water at the end of the growing period. Mortality was recorded twice daily in both experiments. Feed and water access time did not influence yolk sac utilization in either experiment (P > 0.05). The IF group exhibited a higher (P < 0.05) BW than those that received feed at or after 28 h at 35 d in both experiments. There was a significant increase in feed consumption in the IF group compared with the groups with access to feed and water after 24 h at 35 d in experiment 2 (P < 0.05), with a similar trend in experiment 1 (P > 0.05). There were no significant differences in the feed conversion ratio (FCR) or mortality at 35 d of age, but the IF group tended to have a poorer FCR than the other groups in both experiments. When the total feed and water times were equalized among all groups, irrespective of the deprivation duration, there were no significant differences among the groups in the BW, feed consumption, the FCR, or mortality in both experiments. It can be concluded that feed and water deprivation for 28 h or longer after hatching (≥28 h) negatively affects the final BW but tends to improve the FCR at 35 d of age compared with chicks that receive feed immediately (2 h after hatching). When the feeding period was equalized in all groups, feed and water deprivation up to 40 h under optimum conditions had no detrimental effect on final live performance. These results suggest that the total feeding period is more critical for broiler performance than the time of posthatch access to feed and water.


Subject(s)
Animal Feed , Animal Husbandry , Chickens , Water , Yolk Sac , Animal Husbandry/methods , Animals , Animals, Newborn , Body Weight , Chickens/growth & development , Chickens/metabolism , Time Factors , Water Supply , Yolk Sac/physiology
2.
Animal ; 10(9): 1525-32, 2016 Sep.
Article in English | MEDLINE | ID: mdl-26234298

ABSTRACT

The objective of this study was to evaluate if a multi-sensor system (milk, activity, body posture) was a better classifier for lameness than the single-sensor-based detection models. Between September 2013 and August 2014, 3629 cow observations were collected on a commercial dairy farm in Belgium. Human locomotion scoring was used as reference for the model development and evaluation. Cow behaviour and performance was measured with existing sensors that were already present at the farm. A prototype of three-dimensional-based video recording system was used to quantify automatically the back posture of a cow. For the single predictor comparisons, a receiver operating characteristics curve was made. For the multivariate detection models, logistic regression and generalized linear mixed models (GLMM) were developed. The best lameness classification model was obtained by the multi-sensor analysis (area under the receiver operating characteristics curve (AUC)=0.757±0.029), containing a combination of milk and milking variables, activity and gait and posture variables from videos. Second, the multivariate video-based system (AUC=0.732±0.011) performed better than the multivariate milk sensors (AUC=0.604±0.026) and the multivariate behaviour sensors (AUC=0.633±0.018). The video-based system performed better than the combined behaviour and performance-based detection model (AUC=0.669±0.028), indicating that it is worthwhile to consider a video-based lameness detection system, regardless the presence of other existing sensors in the farm. The results suggest that Θ2, the feature variable for the back curvature around the hip joints, with an AUC of 0.719 is the best single predictor variable for lameness detection based on locomotion scoring. In general, this study showed that the video-based back posture monitoring system is outperforming the behaviour and performance sensing techniques for locomotion scoring-based lameness detection. A GLMM with seven specific variables (walking speed, back posture measurement, daytime activity, milk yield, lactation stage, milk peak flow rate and milk peak conductivity) is the best combination of variables for lameness classification. The accuracy on four-level lameness classification was 60.3%. The accuracy improved to 79.8% for binary lameness classification. The binary GLMM obtained a sensitivity of 68.5% and a specificity of 87.6%, which both exceed the sensitivity (52.1%±4.7%) and specificity (83.2%±2.3%) of the multi-sensor logistic regression model. This shows that the repeated measures analysis in the GLMM, taking into account the individual history of the animal, outperforms the classification when thresholds based on herd level (a statistical population) are used.


Subject(s)
Cattle Diseases/diagnosis , Dairying/methods , Image Processing, Computer-Assisted/methods , Lameness, Animal/diagnosis , Video Recording/methods , Animals , Belgium , Cattle , Female , Lactation , Milk/metabolism , Multivariate Analysis , Physical Conditioning, Animal , Posture , Sensitivity and Specificity
3.
Br Poult Sci ; 56(4): 503-9, 2015.
Article in English | MEDLINE | ID: mdl-25900009

ABSTRACT

1. It has been reported that the increasing CO2 tension triggers the embryo to pip the air cell and emerge from the egg. However, the mechanism by which higher CO2 concentrations during the last few days of incubation affect chick physiology and the hatching process is unclear. This study investigated the effect of CO2 concentrations up to 1% during pipping, on the onset and length of the hatch window (HW) and chick quality. 2. Four batches of Ross 308 broiler eggs (600 eggs per batch) were incubated in two small-scale custom-built incubators (Petersime NV). During the final 3 d of incubation, control eggs were exposed to a lower CO2 concentration (0.3%), while the test eggs experienced a higher CO2 concentration programme (peak of 1%). 3. There were no significant differences in blood values, organ weight and body weight. There was also no difference in hatchability between control and test groups. However, a small increase in the chick weight and the percentage of first class chicks was found in the test groups. Furthermore, plasma corticosterone profiles during hatching were altered in embryos exposed to higher CO2; however, they dropped to normal levels at d 21 of incubation. Importantly, the hatching process was delayed and synchronised in the test group, resulting in a narrowed HW which was 2.7 h shorter and 5.3 h later than the control group. 4. These results showed that exposing chicks to 1% CO2 concentration during pipping did not have negative impacts on physiological status of newly hatched chicks. In addition, it may have a significant impact on the physiological mechanisms controlling hatching and have benefits for the health and welfare of chickens by reducing the waiting time after hatching.


Subject(s)
Carbon Dioxide/metabolism , Chick Embryo/physiology , Chickens/physiology , Animals , Blood Chemical Analysis/veterinary , Body Weight , Corticosterone/blood , Organ Size
4.
J Therm Biol ; 48: 69-76, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25660633

ABSTRACT

Thermodynamic study of incubated eggs is an important component in the optimisation of incubation processes. However, research on the interaction of heat and moisture transfer mechanisms in eggs is rather limited and does not focus on the hatching stage of incubation. During hatch, both the recently hatched chick and the broken eggshell add extra heat and moisture contents to the hatcher environment. In this study, we have proposed a novel way to estimate thermodynamically the amount of water evaporated from a broken eggshell during hatch. The hypothesis of this study considers that previously reported drops in eggshell temperature during hatching of chicks is the result remaining water content evaporating from the eggshell, released on the inner membrane by the recently hatched wet chick, just before hatch. To reproduce this process, water was sprayed on eggshells to mimic the water-fluid from the wet body of a chick. For each sample of eggshell, the shell geometry and weight, surface area and eggshell temperature were measured. Water evaporation losses and convection coefficient were calculated using a novel model approach considering the simultaneous heat and mass transfer profiles in an eggshell. The calculated average convective coefficient was 23.9 ± 7.5 W/m(2) °C, similar to previously reported coefficients in literature as a function of 0.5-1m/s air speed range. Comparison between measured and calculated values for the water evaporation showed 68% probability accuracy, associated to the use of an experimentally derived single heat transfer coefficient. The results support our proposed modelling approach of heat and mass transfer mechanisms. Furthermore, by estimating the amount of evaporated water in an eggshell post-hatch, air humidity levels inside the hatcher can be optimised to ensure wet chicks dry properly while not dehydrating early hatching chicks.


Subject(s)
Animals, Newborn/physiology , Chickens/physiology , Models, Theoretical , Animals , Eggs , Hot Temperature , Humidity , Temperature , Thermodynamics , Water
5.
Animal ; 9(7): 1181-7, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25711527

ABSTRACT

Newly hatched chicks may be held longer than 48 h and experience long periods of fasting in commercial hatcheries. Limited information is known about the physiological status of chicks in such situations, due to the difficulty of precisely recording time of hatch. This study investigated the effect of the time from hatch to pulling (holding period) on physiological measures/parameters in 109 broiler chicks. Fertile Ross 308 eggs were incubated in a custom built small-scale incubator. The individual hatching time of each focal chick was determined using eggshell temperature monitoring. At 'pulling' (512 h of incubation time), the quality of focal chicks was assessed using the chick scoring method and physiological parameters were measured including BW, organ (heart, liver and stomach) weights, blood values and plasma corticosterone level. The time from hatch to pulling varied from 7.58 to 44.97 h. Egg weight at setting was significantly correlated with chick BW and weight of organs at pulling, but had no effect on chick quality, blood values and plasma corticosterone. Relative BW at pulling was negatively associated with the duration of holding period (P=0.002). However, there was a positive correlation between relative stomach weight and the duration of the holding period (P<0.001). As the holding period duration increased, there was a trend that blood partial pressure of oxygen, haematocrit and haemoglobin also increased, and blood partial pressure of carbon dioxide, total carbon dioxide and bicarbonate decreased (P<0.05). A wide range of plasma corticosterone was observed from chicks that had experienced different durations of holding period. We conclude that shortening the hatch window and minimising the number of chicks that experience a long holding period before pulling may improve chick quality and physiological status, which may be due to unfavourable environmental conditions that include feed and water deprivation.


Subject(s)
Animals, Newborn/physiology , Body Constitution/physiology , Chickens/physiology , Growth and Development/physiology , Incubators/veterinary , Age Factors , Animals , Body Weight , Carbon Dioxide/blood , Corticosterone/blood , Heart/growth & development , Hematocrit , Liver/growth & development , Organ Size , Ovum/growth & development , Oxygen/blood , Stomach/growth & development
6.
Br Poult Sci ; 56(2): 143-8, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25559058

ABSTRACT

1. Previous research has reported that chicken embryos develop a functionary auditory system during incubation and that prenatal sound may play an important role in embryo development and alter the hatch time. In this study the effects of prenatal auditory stimulation on hatch process, hatch performance, the development of embryo and blood parameters were investigated. 2. Four batches of Ross 308 broiler breeder eggs were incubated either in control or in sound-stimulated groups. The sound-stimulated embryos were exposed to a discontinuous sound of species-specific calls by means of a speaker at 72 dB for 16 h a day: maternal calls from d 10 to d 19 of incubation time and embryo/chick calls from d 19 until hatching. The species-specific sound was excluded from the control group. 3. The onset of hatch was delayed in the sound-stimulated group compared to the controls. This was also supported by comparison of the exact hatching time of individual focal chicks within the two groups. However, the sound-stimulated embryos had a lower hatchability than the control group, mainly due to significantly increased numbers of late deaths. 4. The embryos exhibited a similar growth pattern between the sound-stimulated group and the control group. Although sound exposure decreased body weight at d 16, no consistent effect of sound on body weight at incubation stage was observed. Species-specific sound stimulation also had no impact on chick quality, blood values and plasma corticosterone concentrations during hatch.


Subject(s)
Acoustic Stimulation/veterinary , Animal Husbandry/methods , Chick Embryo/physiology , Chickens/physiology , Reproduction , Vocalization, Animal , Animals , Blood Chemical Analysis/veterinary , Body Weight , Chick Embryo/growth & development , Chickens/growth & development , Corticosterone , Female , Organ Size , Reproducibility of Results , Species Specificity
7.
J Dairy Sci ; 97(8): 4852-63, 2014.
Article in English | MEDLINE | ID: mdl-24931530

ABSTRACT

The objective of this study was to quantify the effect of hoof trimming on cow behavior (ruminating time, activity, and locomotion score) and performance (milk yield) over time. Data were gathered from a commercial dairy farm in Israel where routine hoof trimming is done by a trained hoof trimmer twice per year on the entire herd. In total, 288 cows spread over 6 groups with varying production levels were used for the analysis. Cow behavior was measured continuously with a commercial neck activity logger and a ruminating time logger (HR-Tag, SCR Engineers Ltd., Netanya, Israel). Milk yield was recorded during each milking session with a commercial milk flow sensor (Free Flow, SCR Engineers Ltd.). A trained observer assigned on the spot 5-point locomotion scores during 19 nighttime milking occasions between 22 October 2012 and 4 February 2013. Behavioral and performance data were gathered from 1wk before hoof trimming until 1wk after hoof trimming. A generalized linear mixed model was used to statistically test all main and interactive effects of hoof trimming, parity, lactation stage, and hoof lesion presence on ruminating time, neck activity, milk yield, and locomotion score. The results on locomotion scores show that the proportional distribution of cows in the different locomotion score classes changes significantly after trimming. The proportion of cows with a locomotion score ≥3 increases from 14% before to 34% directly after the hoof trimming. Two months after the trimming, the number of cows with a locomotion score ≥3 reduced to 20%, which was still higher than the baseline values 2wk before the trimming. The neck activity level was significantly reduced 1d after trimming (380±6 bits/d) compared with before trimming (389±6 bits/d). Each one-unit increase in locomotion score reduced cow activity level by 4.488 bits/d. The effect of hoof trimming on ruminating time was affected by an interaction effect with parity. The effect of hoof trimming on locomotion scores was affected by an interaction effect with lactation stage and tended to be affected by interaction effects with hoof lesion presence, indicating that cows with a lesion reacted different to the trimming than cows without a lesion did. The results show that the routine hoof trimming affected dairy cow behavior and performance in this farm.


Subject(s)
Digestion , Hoof and Claw/metabolism , Locomotion , Milk/metabolism , Animals , Behavior, Animal/physiology , Cattle , Female , Israel , Lactation
8.
Poult Sci ; 92(12): 3300-9, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24235242

ABSTRACT

This experiment studied the effect of transportation duration of 1-d-old chicks on dehydration, mortality, production performance, and pododermatitis during the growout period. Eggs from the same breeder flock (Ross PM3) were collected at 35, 45, and 56 wk of age, for 3 successive identical experiments. In each experiment, newly hatched chicks received 1 of 3 transportation duration treatments from the hatchery before placement in the on-site rearing facility: no transportation corresponding to direct placement in less than 5 min (T00), or 4 (T04) or 10 h (T10) of transportation. The chicks were housed in 35-m(2) pens (650 birds each) and reared until 35 d old. Hematocrit and chick BW were measured on sample chicks before and after transportation. During the growout period, bird weight, feed uptake, and feed conversion ratio were measured weekly until slaughter. Transportation duration affected BW; T00 groups had a significantly higher BW than T04 and T10 transported birds but this effect lasted only until d 21. No clear effect on hematocrit, feed uptake, feed conversion ratio, or mortality was observed for birds transported up to 10 h. The decrease in weight in T10 birds was associated with less severe pododermatitis. Increasing age of the breeder flock was correlated with reduced egg fertility and hatchability, and also with higher quality and BW of hatched chicks. Chicks from older breeders also exhibited reduced mortality during the growout period.


Subject(s)
Animal Nutritional Physiological Phenomena , Chickens , Dermatitis/veterinary , Poultry Diseases/epidemiology , Transportation , Animal Husbandry , Animals , Body Weight , Chickens/physiology , Dermatitis/epidemiology , Dermatitis/etiology , Feeding Behavior , France/epidemiology , Hematocrit/veterinary , Longevity , Poultry Diseases/etiology , Time Factors
9.
J Dairy Sci ; 96(7): 4286-98, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23684042

ABSTRACT

The objective of this study was to develop and validate a mathematical model to detect clinical lameness based on existing sensor data that relate to the behavior and performance of cows in a commercial dairy farm. Identification of lame (44) and not lame (74) cows in the database was done based on the farm's daily herd health reports. All cows were equipped with a behavior sensor that measured neck activity and ruminating time. The cow's performance was measured with a milk yield meter in the milking parlor. In total, 38 model input variables were constructed from the sensor data comprising absolute values, relative values, daily standard deviations, slope coefficients, daytime and nighttime periods, variables related to individual temperament, and milk session-related variables. A lame group, cows recognized and treated for lameness, to not lame group comparison of daily data was done. Correlations between the dichotomous output variable (lame or not lame) and the model input variables were made. The highest correlation coefficient was obtained for the milk yield variable (rMY=0.45). In addition, a logistic regression model was developed based on the 7 highest correlated model input variables (the daily milk yield 4d before diagnosis; the slope coefficient of the daily milk yield 4d before diagnosis; the nighttime to daytime neck activity ratio 6d before diagnosis; the milk yield week difference ratio 4d before diagnosis; the milk yield week difference 4d before diagnosis; the neck activity level during the daytime 7d before diagnosis; the ruminating time during nighttime 6d before diagnosis). After a 10-fold cross-validation, the model obtained a sensitivity of 0.89 and a specificity of 0.85, with a correct classification rate of 0.86 when based on the averaged 10-fold model coefficients. This study demonstrates that existing farm data initially used for other purposes, such as heat detection, can be exploited for the automated detection of clinically lame animals on a daily basis as well.


Subject(s)
Behavior, Animal/physiology , Cattle Diseases/diagnosis , Dairying/instrumentation , Feeding Behavior/physiology , Lactation/physiology , Lameness, Animal/diagnosis , Milk , Neck , Animals , Cattle , Cattle Diseases/physiopathology , Dairying/methods , Female , Housing, Animal , Lameness, Animal/physiopathology , Logistic Models , Monitoring, Physiologic/instrumentation , Monitoring, Physiologic/veterinary , Multivariate Analysis
10.
Poult Sci ; 92(2): 303-9, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23300293

ABSTRACT

This study investigated variations in eggshell temperature (T(egg)) during the hatching process of broiler eggs. Temperature sensors monitored embryo temperature by registering T(egg) every minute. Measurements carried out on a sample of 40 focal eggs revealed temperature drops between 2 to 6°C during the last 3 d of incubation. Video cameras recorded the hatching process and served as the gold standard reference for manually labeling the hatch times of chicks. Comparison between T(egg) drops and the hatch time of individuals revealed a time synchronization with 99% correlation coefficient and an absolute average time difference up to 25 min. Our findings suggest that attaching temperature sensors to eggshells is a precise tool for monitoring the hatch time of individual chicks. Individual hatch monitoring registers the biological age of chicks and facilitates an accurate and reliable means to count hatching results and manage the hatch window.


Subject(s)
Animal Husbandry/methods , Chickens/growth & development , Chickens/physiology , Animals , Chick Embryo/embryology , Chick Embryo/physiology , Egg Shell/physiology , Temperature , Thermometers/veterinary , Time Factors , Videotape Recording
11.
J Dairy Sci ; 96(1): 257-66, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23164234

ABSTRACT

Currently, diagnosis of lameness at an early stage in dairy cows relies on visual observation by the farmer, which is time consuming and often omitted. Many studies have tried to develop automatic cow lameness detection systems. However, those studies apply thresholds to the whole population to detect whether or not an individual cow is lame. Therefore, the objective of this study was to develop and test an individualized version of the body movement pattern score, which uses back posture to classify lameness into 3 classes, and to compare both the population and the individual approach under farm conditions. In a data set of 223 videos from 90 cows, 76% of cows were correctly classified, with an 83% true positive rate and 22% false positive rate when using the population approach. A new data set, containing 105 videos of 8 cows that had moved through all 3 lameness classes, was used for an ANOVA on the 3 different classes, showing that body movement pattern scores differed significantly among cows. Moreover, the classification accuracy and the true positive rate increased by 10 percentage units up to 91%, and the false positive rate decreased by 4 percentage units down to 6% when based on an individual threshold compared with a population threshold.


Subject(s)
Cattle Diseases/classification , Lameness, Animal/classification , Animals , Cattle , Cattle Diseases/diagnosis , Cattle Diseases/physiopathology , Female , Lameness, Animal/diagnosis , Lameness, Animal/physiopathology , Movement/physiology , Posture/physiology , Reproducibility of Results , Video Recording
SELECTION OF CITATIONS
SEARCH DETAIL
...