Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
Science ; 384(6697): 776-781, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38753798

ABSTRACT

Sophisticated statistical mechanics approaches and human intuition have demonstrated the possibility of self-assembling complex lattices or finite-size constructs. However, attempts so far have mostly only been successful in silico and often fail in experiment because of unpredicted traps associated with kinetic slowing down (gelation, glass transition) and competing ordered structures. Theoretical predictions also face the difficulty of encoding the desired interparticle interaction potential with the experimentally available nano- and micrometer-sized particles. To overcome these issues, we combine SAT assembly (a patchy-particle interaction design algorithm based on constrained optimization) with coarse-grained simulations of DNA nanotechnology to experimentally realize trap-free self-assembly pathways. We use this approach to assemble a pyrochlore three-dimensional lattice, coveted for its promise in the construction of optical metamaterials, and characterize it with small-angle x-ray scattering and scanning electron microscopy visualization.

2.
J Chem Phys ; 159(17)2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37921252

ABSTRACT

The phase diagram of hard helices differs from its hard rods counterpart by the presence of chiral "screw" phases stemming from the characteristic helical shape, in addition to the conventional liquid crystal phases also found for rod-like particles. Using extensive Monte Carlo and Molecular Dynamics simulations, we study the effect of the addition of a short-range attractive tail representing solvent-induced interactions to a fraction of the sites forming the hard helices, ranging from a single-site attraction to fully attractive helices for a specific helical shape. Different temperature regimes exist for different fractions of the attractive sites, as assessed in terms of the relative Boyle temperatures, that are found to be rather insensitive to the specific shape of the helical particle. The temperature range probed by the present study is well above the corresponding Boyle temperatures, with the phase behaviour still mainly entropically dominated and with the existence and location of the various liquid crystal phases only marginally affected. The pressure in the equation of state is found to decrease upon increasing the fraction of attractive beads and/or on lowering the temperature at fixed volume fraction, as expected on physical grounds. All screw phases are found to be stable within the considered range of temperatures with the smectic phase becoming more stable on lowering the temperature. By contrast, the location of the transition lines do not display a simple dependence on the fraction of attractive beads in the considered range of temperatures.

3.
Methods Mol Biol ; 2639: 93-112, 2023.
Article in English | MEDLINE | ID: mdl-37166713

ABSTRACT

This chapter introduces how to run molecular dynamics simulations for DNA origami using the oxDNA coarse-grained model.


Subject(s)
DNA , Molecular Dynamics Simulation
4.
Nanoscale ; 14(38): 14268-14275, 2022 Oct 06.
Article in English | MEDLINE | ID: mdl-36129342

ABSTRACT

The self-assembly of colloidal diamond (CD) crystals is considered as one of the most coveted goals of nanotechnology, both from the technological and fundamental points of view. For applications, colloidal diamond is a photonic crystal which can open new possibilities of manipulating light for information processing. From a fundamental point of view, its unique symmetry exacerbates a series of problems that are commonly faced during the self-assembly of target structures, such as the presence of kinetic traps and the formation of crystalline defects and alternative structures (polymorphs). Here we demonstrate that all these problems can be systematically addressed via SAT-assembly, a design framework that converts self-assembly into a Boolean satisfiability problem (SAT). Contrary to previous solutions (requiring four or more components), we prove that the assembly of the CD crystal only requires a binary mixture. Moreover, we use molecular dynamics simulations of a system composed by nearly a million nucleotides to test a DNA nanotechnology design that constitutes a promising candidate for experimental realization.

5.
Anal Chim Acta ; 1204: 339740, 2022 Apr 29.
Article in English | MEDLINE | ID: mdl-35397910

ABSTRACT

There is an urgent need for sensing strategies to screen perfluoroalkyl substances (PFAS) in aqueous matrices. These strategies must be applicable in large-scale monitoring plans to face the ubiquitous use of PFAS, their wide global spread, and their fast evolution towards short-chain, branched molecules. To this aim, the changes in fluorinated self-assembled monolayers (SAM) with different architectures (pinholes/defects-free and with randomized pinholes/defects) were studied upon exposure to both long and short-chain PFAS. The applicability of fluorinated SAM in PFAS sensing was evaluated. Changes in the SAM structures were characterised combining electrochemical impedance spectroscopy and voltammetric techniques. The experimental data interpretation was supported by molecular dynamics simulations to gain a more in-depth understanding of the interaction mechanisms involved. Pinhole/defect-free fluorinated SAM were found to be applicable to long-chain PFAS screening within switch-on sensing strategy, while a switch-off sensing strategy was reported for screening of both short/long-chain PFAS. These strategies confirmed the possibility to play on fluorophilic interactions when designing PFAS screening methods.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Fluorocarbons/chemistry
6.
J Phys Condens Matter ; 34(35)2022 Jun 29.
Article in English | MEDLINE | ID: mdl-35148521

ABSTRACT

We propose a general framework for solving inverse self-assembly problems, i.e. designing interactions between elementary units such that they assemble spontaneously into a predetermined structure. Our approach uses patchy particles as building blocks, where the different units bind at specific interaction sites (the patches), and we exploit the possibility of having mixtures with several components. The interaction rules between the patches is determined by transforming the combinatorial problem into a Boolean satisfiability problem (SAT) which searches for solutions where all bonds are formed in the target structure. Additional conditions, such as the non-satisfiability of competing structures (e.g. metastable states) can be imposed, allowing to effectively design the assembly path in order to avoid kinetic traps. We demonstrate this approach by designing and numerically simulating a cubic diamond structure from four particle species that assembles without competition from other polymorphs, including the hexagonal structure.

7.
J Chem Phys ; 154(10): 104902, 2021 Mar 14.
Article in English | MEDLINE | ID: mdl-33722037

ABSTRACT

Using isobaric Monte Carlo simulations, we map out the entire phase diagram of a system of hard cylindrical particles of length (L) and diameter (D) using an improved algorithm to identify the overlap condition between two cylinders. Both the prolate L/D > 1 and the oblate L/D < 1 phase diagrams are reported with no solution of continuity. In the prolate L/D > 1 case, we find intermediate nematic N and smectic SmA phases in addition to a low density isotropic I and a high density crystal X phase with I-N-SmA and I-SmA-X triple points. An apparent columnar phase C is shown to be metastable, as in the case of spherocylinders. In the oblate L/D < 1 case, we find stable intermediate cubatic (Cub), nematic (N), and columnar (C) phases with I-N-Cub, N-Cub-C, and I-Cub-C triple points. Comparison with previous numerical and analytical studies is discussed. The present study, accounting for the explicit cylindrical shape, paves the way to more sophisticated models with important biological applications, such as viruses and nucleosomes.

8.
J Chem Theory Comput ; 16(12): 7764-7775, 2020 Dec 08.
Article in English | MEDLINE | ID: mdl-33147408

ABSTRACT

We present a new method for calculating internal forces in DNA structures using coarse-grained models and demonstrate its utility with the oxDNA model. The instantaneous forces on individual nucleotides are explored and related to model potentials, and using our framework, internal forces are calculated for two simple DNA systems and for a recently published nanoscopic force clamp. Our results highlight some pitfalls associated with conventional methods for estimating internal forces, which are based on elastic polymer models, and emphasize the importance of carefully considering secondary structure and ionic conditions when modeling the elastic behavior of single-stranded DNA. Beyond its relevance to the DNA nanotechnological community, we expect our approach to be broadly applicable to calculations of internal force in a variety of structures-from DNA to protein-and across other coarse-grained simulation models.


Subject(s)
DNA, Single-Stranded/chemistry , Molecular Dynamics Simulation , Nucleic Acid Conformation
9.
Phys Rev Lett ; 125(11): 118003, 2020 Sep 11.
Article in English | MEDLINE | ID: mdl-32975991

ABSTRACT

One of the fundamental goals of nanotechnology is to exploit selective and directional interactions between molecules to design particles that self-assemble into desired structures, from capsids, to nanoclusters, to fully formed crystals with target properties (e.g., optical, mechanical, etc.). Here, we provide a general framework which transforms the inverse problem of self-assembly of colloidal crystals into a Boolean satisfiability problem for which solutions can be found numerically. Given a reference structure and the desired number of components, our approach produces designs for which the target structure is an energy minimum, and also allows us to exclude solutions that correspond to competing structures. We demonstrate the effectiveness of our approach by designing model particles that spontaneously nucleate milestone structures such as the cubic diamond, the pyrochlore, and the clathrate lattices.

10.
J Comput Chem ; 40(29): 2586-2595, 2019 11 05.
Article in English | MEDLINE | ID: mdl-31301183

ABSTRACT

Simulations of nucleic acids at different levels of structural details are increasingly used to complement and interpret experiments in different fields, from biophysics to medicine and materials science. However, the various structural models currently available for DNA and RNA and their accompanying suites of computational tools can be very rarely used in a synergistic fashion. The tacoxDNA webserver and standalone software package presented here are a step toward a long-sought interoperability of nucleic acids models. The webserver offers a simple interface for converting various common input formats of DNA structures and setting up molecular dynamics (MD) simulations. Users can, for instance, design DNA rings with different topologies, such as knots, with and without supercoiling, by simply providing an XYZ coordinate file of the DNA centre-line. More complex DNA geometries, as designable in the cadnano, CanDo and Tiamat tools, can also be converted to all-atom or oxDNA representations, which can then be used to run MD simulations. Though the latter are currently geared toward the native and LAMMPS oxDNA representations, the open-source package is designed to be further expandable. TacoxDNA is available at http://tacoxdna.sissa.it. © 2019 Wiley Periodicals, Inc.


Subject(s)
DNA/chemistry , Internet , Molecular Dynamics Simulation , Nucleic Acid Conformation , Software
11.
J Chem Theory Comput ; 15(8): 4660-4672, 2019 Aug 13.
Article in English | MEDLINE | ID: mdl-31282669

ABSTRACT

DNA cyclization is a powerful technique to gain insight into the nature of DNA bending. While the wormlike chain model provides a good description of small to moderate bending fluctuations, it is expected to break down for large bending. Recent cyclization experiments on strongly bent shorter molecules indeed suggest enhanced flexibility over and above that expected from the wormlike chain. Here, we use a coarse-grained model of DNA to investigate the subtle thermodynamics of DNA cyclization for molecules ranging from 30 to 210 base pairs. As the molecules get shorter, we find increasing deviations between our computed equilibrium j-factor and the classic wormlike chain predictions of Shimada and Yamakawa for a torsionally aligned looped molecule. These deviations are due to sharp kinking, first at nicks, and only subsequently in the body of the duplex. At the shortest lengths, substantial fraying at the ends of duplex domains is the dominant method of relaxation. We also estimate the dynamic j-factor measured in recent FRET experiments. We find that the dynamic j-factor is systematically larger than its equilibrium counterpart-with the deviation larger for shorter molecules-because not all the stress present in the fully cyclized state is present in the transition state. These observations are important for the interpretation of recent cyclization experiments, suggesting that measured anomalously high j-factors may not necessarily indicate non-WLC behavior in the body of duplexes.


Subject(s)
DNA, Circular/chemistry , Base Pairing , Cyclization , Elasticity , Models, Molecular , Monte Carlo Method , Nucleic Acid Conformation , Thermodynamics
12.
ACS Med Chem Lett ; 10(4): 517-521, 2019 Apr 11.
Article in English | MEDLINE | ID: mdl-30996789

ABSTRACT

One of the most promising applications of DNA origami is its use as an excellent evolution of nanostructured intelligent systems for drug delivery, but short in vivo lifetime and immune-activation are still major challenges to overcome. On the contrary, stealth liposomes have long-circulation time and are well tolerated by the immune system. To overcome DNA origami limitations, we have designed and synthesized a compact short tube DNA origami (STDO) of approximately 30 nm in length and 10 nm in width. These STDO are highly stable ≥48 h in physiological conditions without any postsynthetic modifications. The compact size of STDO precisely fits inside a stealthy liposome of about 150 nm and could efficiently remotely load doxorubicin in liposomes (LSTDO) without a pH driven gradient. We demonstrated that this innovative drug delivery system (DDS) has an optimal tumoral release and high biocompatible profiles opening up new horizons to encapsulate many other hydrophobic drugs.

13.
Nucleic Acids Res ; 47(3): 1585-1597, 2019 02 20.
Article in English | MEDLINE | ID: mdl-30605514

ABSTRACT

We use the oxDNA coarse-grained model to provide a detailed characterization of the fundamental structural properties of DNA origami, focussing on archetypal 2D and 3D origami. The model reproduces well the characteristic pattern of helix bending in a 2D origami, showing that it stems from the intrinsic tendency of anti-parallel four-way junctions to splay apart, a tendency that is enhanced both by less screened electrostatic interactions and by increased thermal motion. We also compare to the structure of a 3D origami whose structure has been determined by cryo-electron microscopy. The oxDNA average structure has a root-mean-square deviation from the experimental structure of 8.4 Å, which is of the order of the experimental resolution. These results illustrate that the oxDNA model is capable of providing detailed and accurate insights into the structure of DNA origami, and has the potential to be used to routinely pre-screen putative origami designs and to investigate the molecular mechanisms that regulate the properties of DNA origami.


Subject(s)
DNA, Cruciform/chemistry , DNA/ultrastructure , Nucleic Acid Conformation , Cryoelectron Microscopy , Crystallography, X-Ray , DNA/chemistry , DNA, Cruciform/genetics , DNA, Cruciform/ultrastructure , Molecular Dynamics Simulation
15.
ACS Nano ; 12(7): 6734-6747, 2018 07 24.
Article in English | MEDLINE | ID: mdl-29851456

ABSTRACT

The mechanical properties of DNA nanostructures are of widespread interest as applications that exploit their stability under constant or intermittent external forces become increasingly common. We explore the force response of DNA origami in comprehensive detail by combining AFM single molecule force spectroscopy experiments with simulations using oxDNA, a coarse-grained model of DNA at the nucleotide level, to study the unravelling of an iconic origami system: the Rothemund tile. We contrast the force-induced melting of the tile with simulations of an origami 10-helix bundle. Finally, we simulate a recently proposed origami biosensor, whose function takes advantage of origami behavior under tension. We observe characteristic stick-slip unfolding dynamics in our force-extension curves for both the Rothemund tile and the helix bundle and reasonable agreement with experimentally observed rupture forces for these systems. Our results highlight the effect of design on force response: we observe regular, modular unfolding for the Rothemund tile that contrasts with strain-softening of the 10-helix bundle which leads to catastropic failure under monotonically increasing force. Further, unravelling occurs straightforwardly from the scaffold ends inward for the Rothemund tile, while the helix bundle unfolds more nonlinearly. The detailed visualization of the yielding events provided by simulation allows preferred pathways through the complex unfolding free-energy landscape to be mapped, as a key factor in determining relative barrier heights is the extensional release per base pair broken. We shed light on two important questions: how stable DNA nanostructures are under external forces and what design principles can be applied to enhance stability.


Subject(s)
DNA/chemistry , Nanostructures/chemistry , Base Pairing , Biomechanical Phenomena , Biosensing Techniques , Microscopy, Atomic Force , Molecular Dynamics Simulation , Nanostructures/ultrastructure , Nanotechnology/methods , Nucleic Acid Conformation , Stress, Mechanical
16.
Eur Phys J E Soft Matter ; 41(5): 59, 2018 May 14.
Article in English | MEDLINE | ID: mdl-29748868

ABSTRACT

Patchy particles is the name given to a large class of systems of mesoscopic particles characterized by a repulsive core and a discrete number of short-range and highly directional interaction sites. Numerical simulations have contributed significantly to our understanding of the behaviour of patchy particles, but, although simple in principle, advanced simulation techniques are often required to sample the low temperatures and long time-scales associated with their self-assembly behaviour. In this work we review the most popular simulation techniques that have been used to study patchy particles, with a special focus on Monte Carlo methods. We cover many of the tools required to simulate patchy systems, from interaction potentials to biased moves, cluster moves, and free-energy methods. The review is complemented by an educationally oriented Monte Carlo computer code that implements all the techniques described in the text to simulate a well-known tetrahedral patchy particle model.

17.
J Chem Phys ; 148(13): 134910, 2018 Apr 07.
Article in English | MEDLINE | ID: mdl-29626893

ABSTRACT

Inspired by recent successes using single-stranded DNA tiles to produce complex structures, we develop a two-step coarse-graining approach that uses detailed thermodynamic calculations with oxDNA, a nucleotide-based model of DNA, to parametrize a coarser kinetic model that can reach the time and length scales needed to study the assembly mechanisms of these structures. We test the model by performing a detailed study of the assembly pathways for a two-dimensional target structure made up of 334 unique strands each of which are 42 nucleotides long. Without adjustable parameters, the model reproduces a critical temperature for the formation of the assembly that is close to the temperature at which assembly first occurs in experiments. Furthermore, the model allows us to investigate in detail the nucleation barriers and the distribution of critical nucleus shapes for the assembly of a single target structure. The assembly intermediates are compact and highly connected (although not maximally so), and classical nucleation theory provides a good fit to the height and shape of the nucleation barrier at temperatures close to where assembly first occurs.


Subject(s)
DNA/chemistry , Molecular Dynamics Simulation , Algorithms , Kinetics , Monte Carlo Method , Thermodynamics
18.
ACS Nano ; 11(12): 12426-12435, 2017 12 26.
Article in English | MEDLINE | ID: mdl-29083876

ABSTRACT

As detailed structural characterizations of large complex DNA nanostructures are hard to obtain experimentally, particularly if they have substantial flexibility, coarse-grained modeling can potentially provide an important complementary role. Such modeling can provide a detailed view of both the average structure and the structural fluctuations, as well as providing insight into how the nanostructure's design determines its structural properties. Here, we present a case study of jointed DNA nanostructures using the oxDNA model. In particular, we consider archetypal hinge and sliding joints, as well as more complex structures involving a number of such coupled joints. Our results highlight how the nature of the motion in these structures can sensitively depend on the precise details of the joints. Furthermore, the generally good agreement with experiments illustrates the power of this approach and suggests the use of such modeling to prescreen the properties of putative designs.


Subject(s)
DNA/chemistry , Molecular Dynamics Simulation , Nanostructures/chemistry , Motion , Nucleic Acid Conformation
19.
J Phys Condens Matter ; 29(1): 014006, 2017 Jan 11.
Article in English | MEDLINE | ID: mdl-27830657

ABSTRACT

We use Monte Carlo simulations and free-energy techniques to show that binary solutions of penta- and hexavalent two-dimensional patchy particles can form thermodynamically stable quasicrystals even at very narrow patch widths, provided their patch interactions are chosen in an appropriate way. Such patchy particles can be thought of as a coarse-grained representation of DNA multi-arm 'star' motifs, which can be chosen to bond with one another very specifically by tuning the DNA sequences of the protruding arms. We explore several possible design strategies and conclude that DNA star tiles that are designed to interact with one another in a specific but not overly constrained way could potentially be used to construct soft quasicrystals in experiment. We verify that such star tiles can form stable dodecagonal motifs using oxDNA, a realistic coarse-grained model of DNA.

20.
Nat Commun ; 7: 13191, 2016 10 21.
Article in English | MEDLINE | ID: mdl-27767029

ABSTRACT

DNA is acquiring a primary role in material development, self-assembling by design into complex supramolecular aggregates, the building block of a new-materials world. Using DNA nanoconstructs to translate sophisticated theoretical intuitions into experimental realizations by closely matching idealized models of colloidal particles is a much less explored avenue. Here we experimentally show that an appropriate selection of competing interactions enciphered in multiple DNA sequences results into the successful design of a one-pot DNA hydrogel that melts both on heating and on cooling. The relaxation time, measured by light scattering, slows down dramatically in a limited window of temperatures. The phase diagram displays a peculiar re-entrant shape, the hallmark of the competition between different bonding patterns. Our study shows that it is possible to rationally design biocompatible bulk materials with unconventional phase diagrams and tuneable properties by encoding into DNA sequences both the particle shape and the physics of the collective response.


Subject(s)
DNA/chemistry , Gels/chemistry , Phase Transition , Temperature , Base Sequence , Colloids/chemistry , Nucleic Acid Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...