Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 410, 2024 01 03.
Article in English | MEDLINE | ID: mdl-38172193

ABSTRACT

Understanding the response of plants to varied gravitational conditions is vital for developing effective food production in space bioregenerative life support systems. This study examines the impact of altered gravity conditions on the growth and morphological responses of Wolffia globosa (commonly known as "water lentils" or "duckweed"), assessing its potential as a space crop. Although an experiment testing the effect of simulated microgravity on Wolffia globosa has been previously conducted, for the first time, we investigated the effect of multiple gravity levels on the growth and morphological traits of Wolffia globosa plants. The plant responses to simulated microgravity, simulated partial gravity (Moon), and hypergravity environments were evaluated using random positioning machines and the large-diameter centrifuge. As hypothesized, we observed a slight reaction to different gravitational levels in the growth and morphological traits of Wolffia globosa. The relative growth rates (RGR) of plants subjected to simulated microgravity and partial gravity were reduced when compared to those in other gravity levels. The morphological analysis revealed differences in plant dimensions and frond length-to-width ratios under diverse gravity conditions. Our findings showed that Wolffia globosa is responsive to gravitational changes, with its growth and morphological adaptations being slightly influenced by varying gravitational environments. As for other crop species, growth was reduced by the microgravity conditions; however, RGR remained substantial at 0.33 a day. In conclusion, this study underscores the potential of Wolffia globosa as a space crop and its adaptability to diverse gravitational conditions, contributing to the development of sustainable food production and bioregenerative life support systems for future space exploration missions.


Subject(s)
Gravity, Altered , Space Flight , Weightlessness , Life Support Systems , Plants , Agriculture
2.
Front Plant Sci ; 14: 1210566, 2023.
Article in English | MEDLINE | ID: mdl-37636122

ABSTRACT

Introduction: Long-duration missions in outer Space will require technologies to regenerate environmental resources such as air and water and to produce food while recycling consumables and waste. Plants are considered the most promising biological regenerators to accomplish these functions, due to their complementary relationship with humans. Plant cultivation for Space starts with small plant growth units to produce fresh food to supplement stowed food for astronauts' onboard spacecrafts and orbital platforms. The choice of crops must be based on limiting factors such as time, energy, and volume. Consequently, small, fast-growing crops are needed to grow in microgravity and to provide astronauts with fresh food rich in functional compounds. Microgreens are functional food crops recently valued for their color and flavor enhancing properties, their rich phytonutrient content and short production cycle. Candidate species of microgreens to be harvested and eaten fresh by crew members, belong to the families Brassicaceae, Asteraceae, Chenopodiaceae, Lamiaceae, Apiaceae, Amarillydaceae, Amaranthaceae, and Cucurbitaceae. Methods: In this study we developed and applied an algorithm to objectively compare numerous genotypes of microgreens intending to select those with the best productivity and phytonutrient profile for cultivation in Space. The selection process consisted of two subsequent phases. The first selection was based on literature data including 39 genotypes and 25 parameters related to growth, phytonutrients (e.g., tocopherol, phylloquinone, ascorbic acid, polyphenols, lutein, carotenoids, violaxanthin), and mineral elements. Parameters were implemented in a mathematical model with prioritization criteria to generate a ranking list of microgreens. The second phase was based on germination and cultivation tests specifically designed for this study and performed on the six top species resulting from the first ranking list. For the second selection, experimental data on phytonutrients were expressed as metabolite production per day per square meter. Results and discussion: In the final ranking list radish and savoy cabbage resulted with the highest scores based on their productivity and phytonutrient profile. Overall, the algorithm with prioritization criteria allowed us to objectively compare candidate species and obtain a ranking list based on the combination of numerous parameters measured in the different species. This method can be also adapted to new species, parameters, or re-prioritizing the parameters for specific selection purposes.

3.
Plants (Basel) ; 11(15)2022 Jul 23.
Article in English | MEDLINE | ID: mdl-35893614

ABSTRACT

Numerous new technologies have been implemented in image analysis methods that help researchers draw scientific conclusions from biological phenomena. Plants of the family Lemnaceae (duckweeds) are the smallest flowering plants in the world, and biometric measurements of single plants and their growth rate are highly challenging. Although the use of software for digital image analysis has changed the way scientists extract phenomenological data (also for studies on duckweeds), the procedure is often not wholly automated and sometimes relies on the intervention of a human operator. Such a constraint can limit the objectivity of the measurements and generally slows down the time required to produce scientific data. Herein lies the need to implement image analysis software with artificial intelligence that can substitute the human operator. In this paper, we present a new method to study the growth rates of the plants of the Lemnaceae family based on the application of machine-learning procedures to digital image analysis. The method is compared to existing analogical and computer-operated procedures. The results showed that our method drastically reduces the time consumption of the human operator while retaining a high correlation in the growth rates measured with other procedures. As expected, machine-learning methods applied to digital image analysis can overcome the constraints of measuring growth rates of very small plants and might help duckweeds gain worldwide attention thanks to their strong nutritional qualities and biological plasticity.

4.
Life Sci Space Res (Amst) ; 32: 8-16, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35065766

ABSTRACT

Long-duration space missions will need to rely on the use of plants in bio-regenerative life support systems (BLSSs) because these systems can produce fresh food and oxygen, reduce carbon dioxide levels, recycle metabolic waste, and purify water. In this scenario, the need for new experiments on the effects of altered gravity conditions on plant biological processes is increasing, and significant efforts should be devoted to new ideas aimed at increasing the scientific output and lowering the experimental costs. Here, we report the design of an easy-to-produce and inexpensive device conceived to analyze the effect of interaction between gravity and light on root tropisms. Each unit consisted of a polystyrene multi-slot rack with light-emitting diodes (LEDs), capable of holding Petri dishes and assembled with a particular filter-paper folding. The device was successfully used for the ROOTROPS (for root tropisms) experiment performed in the Large Diameter Centrifuge (LDC) and Random Positioning Machine (RPM) at ESA's European Space Research and Technology centre (ESTEC). During the experiments, four light treatments and six gravity conditions were factorially combined to study their effects on root orientation of Brassica oleracea seedlings. Light treatments (red, blue, and white) and a dark condition were tested under four hypergravity levels (20 g, 15 g, 10 g, 5 g), a 1 g control, and a simulated microgravity (RPM) condition. Results of validation tests showed that after 24 h, the assembled system remained unaltered, no slipping or displacement of seedlings occurred at any hypergravity treatment or on the RPM, and seedlings exhibited robust growth. Overall, the device was effective and reliable in achieving scientific goals, suggesting that it can be used for ground-based research on phototropism-gravitropism interactions. Moreover, the concepts developed can be further expanded for use in future spaceflight experiments with plants.


Subject(s)
Space Flight , Weightlessness , Gravitropism , Phototropism , Seedlings , Tropism
5.
Plants (Basel) ; 10(9)2021 Sep 13.
Article in English | MEDLINE | ID: mdl-34579428

ABSTRACT

To colonise other planets, self-sufficiency of space missions is mandatory. To date, the most promising technology to support long-duration missions is the bioregenerative life support system (BLSS), in which plants as autotrophs play a crucial role in recycling wastes and producing food and oxygen. We reviewed the scientific literature on duckweed (Lemnaceae) and reported available information on plant biological traits, nutritional features, biomass production, and space applications, especially of the genus Wolffia. Results confirmed that the smallest existing higher plants are the best candidate for space BLSS. We discussed needs for further research before criticalities to be addressed to finalise the adoption of Wolffia species for space missions.

6.
Life Sci Space Res (Amst) ; 27: 19-26, 2020 Nov.
Article in English | MEDLINE | ID: mdl-34756226

ABSTRACT

The interest in re-using flown hardware for new and different space biology experiments is increasing. To match the constraints of the flown hardware with the requirements of the new biological system, innovative methodological approaches are necessary. MULTITROP was a successful plant biology experiment that was performed on the ISS to investigate multiple-tropism interactions during the early stage of seedling growth. We used the hardware designed and flown for the IFOAM experiment in 2009. The main challenge was to implement seeds of a crop species in a growth chamber conceived for yeast culture and to grow the seedlings in microgravity condition but activating seed germination on ground before the launch. Our approach was to adapt the biological system to the hardware constraints and also to the experiment timing and the environmental factors expected during the prelaunch, launch and flight operations. We looked for an objective and repeatable method to effectively select the best suited species. Innovatively, we applied the method of inclusion/exclusion criteria to adapt a new biological system to a reused hardware. The list and the consecutive order of the specific inclusive/exclusive criteria turned out to be a valid support to guide the science team in objectively choosing the most suitable species for the experiment. Among the 50 initial food species, the carrot seeds resulted as the best in satisfying all technical requirements and post-flight data confirmed the expectations.


Subject(s)
Space Flight , Weightlessness , Seedlings , Seeds
7.
Front Plant Sci ; 10: 1547, 2019.
Article in English | MEDLINE | ID: mdl-31824550

ABSTRACT

Understanding how plants respond to spaceflight and extraterrestrial environments is crucial to develop life-support systems intended for long-term human explorations. Gravity is a main factor influencing root development and orientation, typically masking other tropisms. Considering that reduced levels of gravity affect many plant responses in space, the interaction of other tropic stimuli in microgravity represents the frontier to be investigated aiming at life-support systems optimization. In this paper we report on MULTITROP (Multiple-Tropism: interaction of gravity, nutrient and water stimuli for root orientation in microgravity), an experiment performed on the International Space Station during the Expedition 52/53. Scientific aim of the experiment was to disentangle hydrotropism from chemotropism for root orientation in absence of the gravity stimulus. Among several species relevant to space farming, Daucus carota was selected for the experiment because of its suitability with the experimental hardware and setup. At launch site, carrot seeds were placed between two disks of inert substrate (one imbibed with water and the other with a disodium phosphate solution) and integrated into a hardware developed, refurbished and flight-certificated by Kayser Italia. Post-flight, a Ground Reference Experiment was performed. Root development and orientation of seedlings grown in microgravity and at 1g condition were measured through 3D-image analysis procedures after imaging with X-ray microtomography. Radicle protruded preferentially from the ventral side of the seed due to the asymmetric position of the embryo. Such a phenomenon did not prevent the achievement of MULTITROP scientific goal but should be considered for further experiments on radicle growth orientation in microgravity. The experiment conducted in space verified that the primary root of carrot shows a positive chemotropism towards disodium phosphate solution in the absence of the gravity stimulus. On Earth, the positive chemotropism was masked by the dominant effect of gravity and roots developed downward regardless of the presence/absence of nutrients in the substrate. Taking advantage of altered gravity conditions and using other chemical compounds, further studies should be performed to deepen our understanding of root chemotropic response and its interaction with other tropisms.

SELECTION OF CITATIONS
SEARCH DETAIL
...