Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(10)2024 May 16.
Article in English | MEDLINE | ID: mdl-38791457

ABSTRACT

Insulin-like peptide 3 (INSL3) is a biomarker for Leydig cells in the testes of vertebrates, and it is principally involved in spermatogenesis through specific binding with the RXFP2 receptor. This study reports the insl3 gene transcript and the Insl3 prepropeptide expression in both non-reproductive and reproductive tissues of Danio rerio. An immunohistochemistry analysis shows that the hormone is present at a low level in the Leydig cells and germ cells at all stages of Danio rerio testis differentiation. Considering that the insl3 gene is transcribed in Leydig cells, our results highlight an autocrine and paracrine function of this hormone in the Danio rerio testis, adding new information on the Insl3 mode of action in reproduction. We also show that Insl3 and Rxfp2 belonging to Danio rerio and other vertebrate species share most of the amino acid residues involved in the ligand-receptor interaction and activation, suggesting a conserved mechanism of action during vertebrate evolution.


Subject(s)
Insulin , Insulins , Proteins , Receptors, G-Protein-Coupled , Testis , Zebrafish , Animals , Zebrafish/genetics , Zebrafish/metabolism , Male , Proteins/metabolism , Proteins/genetics , Insulin/metabolism , Testis/metabolism , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Insulins/metabolism , Insulins/genetics , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Leydig Cells/metabolism , Amino Acid Sequence , Spermatogenesis/genetics
2.
Front Endocrinol (Lausanne) ; 15: 1399256, 2024.
Article in English | MEDLINE | ID: mdl-38818504

ABSTRACT

Background: It is well known that metabolic disorders, including type 1 diabetes (T1D), are often associated with reduced male fertility, mainly increasing oxidative stress and impairing the hypothalamus-pituitary-testis (HPT) axis, with consequently altered spermatogenesis and reduced sperm parameters. Herein, using a rat model of T1D obtained by treatment with streptozotocin (STZ), we analyzed several parameters of testicular activity. Methods: A total of 10 adult male Wistar rats were divided into two groups of five: control and T1D, obtained with a single intraperitoneal injection of STZ. After 3 months, the rats were anesthetized and sacrificed; one testis was stored at -80°C for biochemical analysis, and the other was fixed for histological and immunofluorescence analysis. Results: The data confirmed that T1D induced oxidative stress and, consequently, alterations in both testicular somatic and germ cells. This aspect was highlighted by enhanced apoptosis, altered steroidogenesis and Leydig cell maturity, and impaired spermatogenesis. In addition, the blood-testis barrier integrity was compromised, as shown by the reduced levels of structural proteins (N-cadherin, ZO-1, occludin, connexin 43, and VANGL2) and the phosphorylation status of regulative kinases (Src and FAK). Mechanistically, the dysregulation of the SIRT1/NRF2/MAPKs signaling pathways was proven, particularly the reduced nuclear translocation of NRF2, affecting its ability to induce the transcription of genes encoding for antioxidant enzymes. Finally, the stimulation of testicular inflammation and pyroptosis was also confirmed, as highlighted by the increased levels of some markers, such as NF-κB and NLRP3. Conclusion: The combined data allowed us to confirm that T1D has detrimental effects on rat testicular activity. Moreover, a better comprehension of the molecular mechanisms underlying the association between metabolic disorders and male fertility could help to identify novel targets to prevent and treat fertility disorders related to T1D.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 1 , NF-E2-Related Factor 2 , NLR Family, Pyrin Domain-Containing 3 Protein , Oxidative Stress , Rats, Wistar , Testis , Animals , Male , Rats , NF-E2-Related Factor 2/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Testis/metabolism , Testis/pathology , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 1/pathology , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Spermatogenesis , Signal Transduction , Germ Cells/metabolism , Spermatozoa/metabolism
3.
Reprod Med Biol ; 22(1): e12542, 2023.
Article in English | MEDLINE | ID: mdl-37795044

ABSTRACT

Purpose: Here, we report, for the first time, the temporal expression and localization of axonemal radial spoke head homolog A (RSPH6A) protein during the first wave of rat spermatogenesis and in oxidative stress conditions. Methods: For the developmental study, testes were collected from rats at different developmental stages (7, 14, 21, 28, 35, 42, and 60 postnatal days); for in vivo treatment, 24 rats were treated with cadmium and/or melatonin. From each sample, western blot (WB) and immunofluorescence (IF) analyses for RSPH6A were performed. Results: RSPH6A expression starts at 21 PND alongside the appearance of I spermatocytes (SPC) with a significant increase up to 60 PND. Data were confirmed by IF analysis, showing that RPSH6A expression is restricted to I and II SPC, spermatids, and mature sperm. In vivo experiments showed that the expression and localization of RSPH6A in the testis and epididymal spermatozoa of adult rats treated with cadmium were impaired. Interestingly, melatonin (an antioxidant), given together with Cd, can counteract its damaging effects. Conclusions: All combined data confirm that RSPH6A contributes to the onset of fertility by acting on sperm motility, raising the possibility of using RSPH6A as a marker for normal fertility in the general population.

4.
J Exp Zool A Ecol Integr Physiol ; 339(10): 915-924, 2023 12.
Article in English | MEDLINE | ID: mdl-37522474

ABSTRACT

Using a rat model of type 1 diabetes (T1D) obtained by treatment with streptozotocin, an antibiotic that destroys pancreatic ß-cells, we evaluated the influence of subsequent hyperglycemia on the morphology and physiology of the Harderian gland (HG). HG is located in the medial corner of the orbit of many terrestrial vertebrates and, in rodents, is characterized by the presence of porphyrins, which being involved in the phototransduction, through photo-oxidation, produce reactive oxygen species activating the autophagy pathway. The study focused on the expression of some morphological markers involved in cell junction formation (occludin, connexin-43, and α-tubulin) and mast cell number (MCN), as well as autophagic and apoptotic pathways. The expression of enzymes involved in steroidogenesis [steroidogenic acute regulatory protein (StAR), and 3ß-hydroxysteroid dehydrogenase (3ß-HSD)] and the level of lipid peroxidation by thiobarbituric acid reactive species assay were also evaluated. The results strongly indicate, for the first time, that T1D has a negative impact on the pathophysiology of rat HG, as evidenced by increased oxidative stress, morphological and biochemical alterations, hyperproduction and secretion of porphyrins, increased MCN, reduced protein levels of StAR and 3ß-HSD, and, finally, induced autophagy and apoptosis. All the combined data support the use of the rat HG as a suitable experimental model to elucidate the molecular damage/survival pathways elicited by stress conditions.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 1 , Harderian Gland , Porphyrins , Animals , Rats , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 1/metabolism , Harderian Gland/metabolism , Porphyrins/adverse effects , Porphyrins/metabolism , Streptozocin/adverse effects , Streptozocin/metabolism
5.
Ecotoxicol Environ Saf ; 259: 115067, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37244200

ABSTRACT

Cadmium (Cd), by producing oxidative stress and acting as an endocrine disruptor, is known to cause severe testicular injury, documented by histological and biomolecular alterations, such as decreased serum testosterone (T) level and impairment of spermatogenesis. This is the first report on the potential counteractive/preventive action of D-Aspartate (D-Asp), a well-known stimulator of T biosynthesis and spermatogenesis progression by affecting hypothalamic-pituitary-gonadal axis, in alleviating Cd effects in the rat testis. Our results confirmed that Cd affects testicular activity, as documented by the reduction of serum T concentration and of the protein levels of steroidogenesis (StAR, 3ß-HSD, and 17ß-HSD) and spermatogenesis (PCNA, p-H3, and SYCP3) markers. Moreover, higher protein levels of cytochrome C and caspase 3, together with the number of cells positive to TUNEL assay, indicated the intensification of the apoptotic process. D-Asp administered either simultaneously to Cd, or for 15 days before the Cd-treatment, reduced the oxidative stress induced by the metal, alleviating the consequent harmful effects. Interestingly, the preventive action of D-Asp was more effective than its counteractive effect. A possible explanation is that giving D-Asp for 15 days induces its significant uptake in the testes, reaching the concentrations necessary for optimum function. In summary, this report highlights, for the first time, the beneficial role played by D-Asp in both counteracting/preventing the adverse Cd effects in the rat testis, strongly encouraging further investigations to consider the potential value of D-Asp also in improving human testicular health and male fertility.


Subject(s)
Cadmium , Testis , Rats , Humans , Animals , Male , Cadmium/metabolism , D-Aspartic Acid/pharmacology , D-Aspartic Acid/metabolism , Spermatogenesis , Oxidative Stress , Testosterone
6.
J Exp Zool A Ecol Integr Physiol ; 337(7): 729-738, 2022 08.
Article in English | MEDLINE | ID: mdl-35665502

ABSTRACT

Herein is reported, for the first time in the rat Harderian gland (HG), the counteractive action of melatonin (Mlt), a well-known antioxidant radical scavenger, on the increased oxidative stress damages induced by a pro-oxidant substance, cadmium (Cd), an environmental pollutant also considered as endocrine disruptor. HG, an infraorbital gland present in almost all terrestrial vertebrates, produces a lipid secretion to lubricate the eyeball, as well as porphyrin/Mlt as light transducers. Moreover, HG is an extra-gonadal source of steroid sex hormones. Via ex vivo experiments lasting for 24 h, we verified the increased lipid peroxidation in Cd-treated glands, producing morphological alteration of the glandular epithelium, as well as an increased porphyrins accumulation. Moreover, Cd also induced a decreased protein level of the steroidogenic enzymes steroidogenic acute regulatory (StAR) and 3ßHSD, and an increased mast cell number. Results obtained with Mlt cotreatment demonstrated that it decreased the levels of Cd-induced oxidative damage, with reversal of all the observed modification. Furthermore, the TUNEL assay showed that the increased number of apoptotic cells in Cd-treated HG was counteracted by the contemporaneous Mlt administration. Results confirmed that Mlt treatment restored the levels of two autophagy markers, LC3 and p62, counteracting the autophagy Cd-induced. Interestingly, the positive effects of Mlt alone were highlighted by the decreased rate of lipid peroxidation as compared with the control, confirming its antioxidant action. Combined data further confirmed the antioxidant action of Mlt in counteracting the degeneration provoked by reactive oxygen species (ROS) in the rat HG, a tissue extremely susceptible to oxidative stress condition.


Subject(s)
Harderian Gland , Melatonin , Animals , Antioxidants/metabolism , Cadmium/metabolism , Cadmium/toxicity , Harderian Gland/chemistry , Harderian Gland/metabolism , Lipid Peroxidation , Melatonin/pharmacology , Rats , Reactive Oxygen Species/metabolism
7.
Ecotoxicol Environ Saf ; 226: 112878, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34634736

ABSTRACT

Herein, we further document the protective action of melatonin (MLT) in mitigating cadmium (Cd) effects on adult rat testis. Cd treatment provoked testicular injury, that was documented by histological and biomolecular alterations, i.e., decrease of serum and testicular testosterone concentration and modified sperm parameters. Mainly, both the cytoarchitecture of the blood-testis barrier (BTB) and germ cell morphology were perturbed, as highlighted by impairment in structural (OCN, VANGL, Cx43) and regulative (Src and FAK) protein levels and/or activation. The study focused on the involvement of the autophagy pathway, that was enhanced especially in the Sertoli cells, probably in response to the disorganization of the BTB. Results obtained with the MLT co-treatment demonstrated that its administration decreased the level of oxidative damage caused by Cd, with reversal of all the observed changes. Moreover, the beneficial effects of MLT alone were evidenced by an increase of sperm quality, in term of motility and DNA integrity. The combined results, obtained in rat, strongly encourage to consider a role for MLT in improving also human testicular health, not only in men exposed to Cd, but also in those having fertility disorders, to ameliorate sperm quality and, consequently, reproductive success.


Subject(s)
Blood-Testis Barrier , Melatonin , Animals , Cadmium/toxicity , Male , Melatonin/pharmacology , Rats , Spermatozoa , Testis
8.
Genes (Basel) ; 12(7)2021 06 30.
Article in English | MEDLINE | ID: mdl-34208970

ABSTRACT

Cadmium (Cd) is one of the most toxic pollutants for health due to its accumulation in several tissues, including testis. This report confirms that Cd increased oxidative stress and apoptosis of germ and somatic cells and provoked testicular injury, as documented by biomolecular and histological alterations, i.e., CAT and SOD activity, the protein level of steroidogenic enzymes (StAR and 3ß-HSD), and morphometric parameters. Additionally, it further documents the melatonin (MLT) coadministration produces affects in mitigating Cd-induced toxicity on adult rat testis, as demonstrated by the reduction of oxidative stress and apoptosis, with reversal of the observed histological changes; moreover, a role of MLT in partially restoring steroidogenic enzymes expression was evidenced. Importantly, the cytoarchitecture of testicular cells was perturbed by Cd exposure, as highlighted by impairment of the expression and localization of two cytoskeleton-associated proteins DAAM1 and PREP, which are involved in the germ cells' differentiation into spermatozoa, altering the normal spermatogenesis. Here, for the first time, we found that the co-treatment with MLT attenuated the Cd-induced toxicity on the testicular DAAM1 and PREP expression. The combined findings provide additional clues about a protective effect of MLT against Cd-induced testicular toxicity by acting on DAAM1 and PREP expression, encouraging further studies to prove its effectiveness in human health.


Subject(s)
Cadmium/toxicity , Cytoskeletal Proteins/metabolism , Gene Expression Regulation/drug effects , Melatonin/pharmacology , Oxidative Stress/drug effects , Prolyl Oligopeptidases/metabolism , Testis/drug effects , Animals , Antioxidants/pharmacology , Apoptosis , Cytoskeletal Proteins/genetics , Male , Prolyl Oligopeptidases/genetics , Rats , Rats, Wistar , Spermatogenesis , Testis/metabolism , Testis/pathology
9.
Animals (Basel) ; 11(1)2021 Jan 08.
Article in English | MEDLINE | ID: mdl-33435542

ABSTRACT

Herein is reported the first evidence of the protective role of D-aspartic acid (D-Asp) in preventing the toxic effect exerted by the alkylating agent ethane dimethane sulfonate (EDS) in the rat testis. We confirmed that EDS treatment specifically destroyed Leydig cells (LC), resulting in the drastic decrease of the serum testosterone level and producing morphological changes in the germinal tubules, i.e., altered organization of the epithelium, loss of cell contacts and the consequent presence of empty spaces between them, and a reduce number of spermatozoa. Moreover, an increase of TUNEL-positive germ cells, other than alteration in the protein level and localization of two LC "markers", StAR and PREP, were observed. Interestingly, results obtained from rats pre-treated with D-Asp for 15 days before EDS-injection showed that all the considered parameters were quite normal. To explore the probable mechanism(s) involved in the protection exerted by D-Asp, we considered the increased oxidative stress induced by EDS and the D-Asp antioxidant effects. Thiobarbiturc acid-reactive species (TBARS) levels increased following EDS-injection, while no change was observed in the D-Asp + EDS treated rats. Our results showed that D-Asp may be used as a strategy to mitigate the toxic effects exerted by environmental pollutants, as endocrine disrupters, in order to preserve the reproductive function.

SELECTION OF CITATIONS
SEARCH DETAIL
...