Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Food Prot ; 84(5): 903-911, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33411902

ABSTRACT

ABSTRACT: The foodborne pathogen Listeria monocytogenes lives as a saprophyte in nature and can adhere to and grow on surfaces as diverse as leaves, sediment, and stainless steel. To discern the mechanisms used by L. monocytogenes for attachment and growth on various surfaces, we studied interactions between the pathogen on lettuce and stainless steel. A panel of 24 strains (23 L. monocytogenes and 1 Listeria innocua) were screened for attachment and growth on lettuce at 4 and 25°C and on stainless steel at 10 and 37°C. Overnight growth of attached cells resulted in a 0- to 3-log increase on lettuce, depending on the strain and the temperature. Among the worst-performing strains on lettuce were two from a large cantaloupe outbreak, indicating that factors important for interactions with cantaloupe may be different from those required on lettuce tissue. Strains that grew the best on lettuce belonged to serotypes 1/2a, 1/2b, and 4b and were from cheese, potatoes, and water-sediment near produce fields. Confocal microscopy of L. monocytogenes tagged with constitutively expressed green fluorescent protein indicated associations with the cut edges and veins of lettuce leaves. On stainless steel coupons, there was a 5- to 7-log increase at 10°C after 7 days and a 4- to 7-log increase at 37°C after 40 h. Statistically, surface growth on stainless steel was better for serotype 1/2a than for serotype 4b strains, even though certain serotype 4b strains grew well on the coupons. The latter included strains that originated from produce and water-sediment. Some strains were fit in both environments, whereas others showed variability between the two different surfaces. Further analysis of these strains should reveal molecular factors needed for adherence and surface growth of L. monocytogenes on different biotic and abiotic surfaces.


Subject(s)
Listeria monocytogenes , Stainless Steel , Bacterial Adhesion , Biofilms , Colony Count, Microbial , Food Microbiology , Lactuca , Listeria , Stainless Steel/analysis
2.
PLoS One ; 11(12): e0167566, 2016.
Article in English | MEDLINE | ID: mdl-27907153

ABSTRACT

Internalin A is an essential virulence gene involved in the uptake of the foodborne pathogen Listeria monocytogenes into host cells. It is intact in clinical strains and often truncated due to Premature Stop Codons (PMSCs) in isolates from processed foods and processing facilities. Less information is known about environmental isolates. We sequenced the inlA alleles and did Multi Locus Variable Number Tandem Repeat Analysis (MLVA) on 112 L. monocytogenes isolates from a 3-year period from naturally contaminated watersheds near a leafy green growing area in Central California. The collection contained 14 serotype 1/2a, 12 serotype 1/2b, and 86 serotype 4b strains. Twenty-seven different inlA alleles were found. Twenty-three of the alleles are predicted to encode intact copies of InlA, while three contain PMSCs. Another allele has a 9-nucleotide deletion, previously described for a clinical strain, indicating that it is still functional. Intact inlA genes were found in 101 isolates, and 8 isolates contained the allele predicted to contain the 3-amino acid deletion. Both allele types were found throughout the 3-year sampling period. Three strains contained inlA alleles with PMSCs, and these were found only during the first 3 months of the study. SNP analysis of the intact alleles indicated clustering of alleles based on serotype and lineage with serotypes 1/2b and 4b (lineage I strains) clustering together, and serotype 1/2a (lineage II strains) clustering separately. The combination of serotype, MLVA types, and inlA allele types indicate that the 112 isolates reflect at least 49 different strains of L. monocytogenes. The finding that 90% of environmental L. monocytogenes isolates contain intact inlA alleles varies significantly from isolates found in processing plants. This information is important to public health labs and growers as to the varieties of L. monocytogenes that could potentially contaminate fresh produce in the field by various means.


Subject(s)
Bacterial Proteins/genetics , Base Sequence , Genotype , Listeria monocytogenes/genetics , Sequence Deletion , Water Microbiology , Alleles , California , Codon, Nonsense , Food Microbiology , Fresh Water/microbiology , Gene Expression , Gene Frequency , Humans , Listeria monocytogenes/classification , Listeria monocytogenes/isolation & purification , Multilocus Sequence Typing , Phylogeny , Polymorphism, Single Nucleotide , Sequence Analysis, DNA , Serogroup , Tandem Repeat Sequences
SELECTION OF CITATIONS
SEARCH DETAIL
...