Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 13: 1059104, 2022.
Article in English | MEDLINE | ID: mdl-36504823

ABSTRACT

MALDI-TOF mass spectrometry has become widely used in clinical microbiology and has proved highly accurate for detection of carbapenemases in Gram-negative bacteria. However, the use of carbapenem-hydrolysis assays in routine diagnostics is hampered by the need for antibiotic substances and for making their fresh solutions each time an assay is conducted. Here, we evaluated the use of commercial antibiotic susceptibility-testing disks as source of ertapenem substrate in MALDI-TOF MS-based assay for detection of carbapenemase-producing Enterobacterales (CPE). The assay was validated on 48 CPE isolates of 8 different species expressing NDM-, VIM-, KPC- and OXA-48-type carbapenemases and exhibiting various levels of resistance to carbapenems (MIC range: 0.25- > 32 mg/l), as well as on 48 carbapenemase-non-producing isolates. The assay conditions were optimized as follows: 10-µl loopful of bacterial colonies was suspended in 150 µl 0.01 M Na-PBS buffer, pH 7.4, a 10 µg ertapenem susceptibility-testing disk was immersed in the suspension and incubated 3 h at 35°C, after which supernatant was obtained by centrifugation and applied on a target plate with alpha-cyano-4-hydroxycinnamic acid matrix. Mass spectra were analyzed between 440 and 560 m/z. Carbapenemase activity was detected in all tested CPE isolates by the appearance of m/z peaks corresponding to ertapenem hydrolysis products: [Mh + H]+:494.2, [Mh + Na]+:516.2, [Mh + 2Na]+:538.2, [Mh/d + H]+:450.2, [Mh/d + Na]+:472.2, and simultaneous decrease or loss of peaks of intact antibiotic: [M + H]+:476.2, [M + Na]+:498.1, [M + 2Na]+:520.1. No hydrolysis peaks or loss of intact ertapenem peaks were observed for carbapenemase-negative strains. We therefore report the development of a sensitive, specific and cost-effective MALDI-TOF MS-based assay for detection of CPE, which makes use of antibiotic disks readily available in most laboratories.

2.
J Antimicrob Chemother ; 72(11): 3100-3107, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-28981793

ABSTRACT

OBJECTIVES: To test the mutant selection window (MSW) hypothesis applied to linezolid-exposed Staphylococcus aureus and to delineate the concentration-resistance relationship, a mixed inoculum of linezolid-susceptible S. aureus cells and linezolid-resistant mutants (RMs) was exposed to linezolid multiple dosing. METHODS: Three S. aureus strains (MIC of linezolid 2 mg/L), S. aureus 479, S. aureus 688 and S. aureus ATCC 700699, and their RMs (MIC 8 mg/L) selected by passaging on antibiotic-containing media were used in the study. RMs of S. aureus 479 and S. aureus ATCC 700699 contained a G2576T replacement (Escherichia coli numbering) in one of the copies of the 23S rRNA gene, which had been reported in clinically isolated mutants. Five-day treatments with twice-daily linezolid were simulated over a 32-fold range of the 24 h AUC (AUC24) to the MIC ratio. RESULTS: A pronounced enrichment of mutants resistant to 2×, 4× and 8× MIC was observed at AUC24/MIC ratios of 30 and 60 when linezolid concentrations were within the MSW for more than half of the dosing interval for each strain. The number of viable mutant cells decreased significantly at the simulated AUC24/MIC ratio of 120, while the AUC24/MIC ratio of 240 completely prevented mutant enrichment in vitro. Bell-shaped AUBCM-AUC24/MIC and AUBCM-AUC24/MPC relationships (r2 0.91 and 0.79, respectively) were strain independent. CONCLUSIONS: The bell-shaped pattern of AUC24/MIC and AUC24/MPC relationships with S. aureus resistance to linezolid is consistent with the MSW hypothesis. 'Antimutant' AUC24/MIC ratios were predicted based on the AUC24/MIC relationship with AUBCM.


Subject(s)
Anti-Bacterial Agents/pharmacology , Linezolid/pharmacology , Linezolid/pharmacokinetics , Microbial Sensitivity Tests/methods , Mutation , Selection, Genetic , Staphylococcus aureus/drug effects , Anti-Bacterial Agents/pharmacokinetics , Area Under Curve , Drug Resistance, Bacterial/genetics , Humans , Models, Biological , RNA, Ribosomal, 23S/genetics , Staphylococcus aureus/genetics
3.
Antimicrob Agents Chemother ; 60(3): 1208-15, 2015 Dec 07.
Article in English | MEDLINE | ID: mdl-26643328

ABSTRACT

There is growing evidence of applicability of the hypothesis of the mutant selection window (MSW), i.e., the range between the MIC and the mutant prevention concentration (MPC), within which the enrichment of resistant mutants is most probable. However, it is not clear if MPC-based pharmacokinetic variables are preferable to the respective MIC-based variables as interstrain predictors of resistance. To examine the predictive power of the ratios of the area under the curve (AUC24) to the MPC and to the MIC, the selection of ciprofloxacin-resistant mutants of three Klebsiella pneumoniae strains with different MPC/MIC ratios was studied. Each organism was exposed to twice-daily ciprofloxacin for 3 days at AUC24/MIC ratios that provide peak antibiotic concentrations close to the MIC, between the MIC and the MPC, and above the MPC. Resistant K. pneumoniae mutants were intensively enriched at an AUC24/MIC ratio of 60 to 360 h (AUC24/MPC ratio from 2.5 to 15 h) but not at the lower or higher AUC24/MIC and AUC24/MPC ratios, in accordance with the MSW hypothesis. AUC24/MPC and AUC24/MIC relationships with areas under the time courses of ciprofloxacin-resistant K. pneumoniae (AUBCM) were bell shaped. These relationships predict highly variable "antimutant" AUC24/MPC ratios (20 to 290 h) compared to AUC24/MIC ratios (1,310 to 2,610 h). These findings suggest that the potential of the AUC24/MPC ratio as an interstrain predictor of K. pneumoniae resistance is lower than that of the AUC24/MIC ratio.


Subject(s)
Anti-Bacterial Agents/pharmacology , Ciprofloxacin/pharmacology , Drug Resistance, Bacterial/drug effects , Klebsiella pneumoniae/drug effects , Anti-Bacterial Agents/pharmacokinetics , Area Under Curve , Ciprofloxacin/pharmacokinetics , Drug Resistance, Bacterial/genetics , Klebsiella pneumoniae/genetics , Microbial Sensitivity Tests , Models, Biological , Mutation
4.
Antimicrob Agents Chemother ; 59(2): 1014-9, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25451050

ABSTRACT

Bacterial resistance studies using in vitro dynamic models are highly dependent on the starting inoculum that might or might not contain spontaneously resistant mutants (RMs). To delineate concentration-resistance relationships with linezolid-exposed Staphylococcus aureus, a mixed inoculum containing both susceptible cells and RMs was used. An RM selected after the 9th passage of the parent strain (MIC, 2 µg/ml) on antibiotic-containing media (RM9; MIC, 8 µg/ml) was chosen for the pharmacodynamic studies, because the mutant prevention concentration (MPC) of linezolid against the parent strain in the presence of RM9 at 10(2) (but not at 10(4)) CFU/ml did not differ from the MPC value determined in the absence of the RMs. Five-day treatments with twice-daily linezolid doses were simulated at concentrations either between the MIC and MPC or above the MPC. S. aureus RMs (resistant to 2× and 4×MIC but not 8× and 16×MIC) were enriched at ratios of the 24-h area under the concentration-time curve (AUC24) to the MIC that provide linezolid concentrations between the MIC and MPC for 100% (AUC24/MIC, 60 h) and 86% (AUC24/MIC, 120 h) of the dosing interval. No such enrichment occurred when linezolid concentrations were above the MIC and below the MPC for a shorter time (37% of the dosing interval; AUC24/MIC, 240 h) or when concentrations were consistently above the MPC (AUC24/MIC, 480 h). These findings obtained using linezolid-susceptible staphylococci supplemented with RMs support the mutant selection window hypothesis. This method provides an option to delineate antibiotic concentration-resistance relationships with bacteria that exhibit low mutation frequencies.


Subject(s)
Acetamides/pharmacology , Methicillin-Resistant Staphylococcus aureus/drug effects , Oxazolidinones/pharmacology , Anti-Bacterial Agents/pharmacology , Linezolid , Microbial Sensitivity Tests , Mutation Rate , Staphylococcus aureus/drug effects
5.
Ann N Y Acad Sci ; 972: 144-50, 2002 Oct.
Article in English | MEDLINE | ID: mdl-12496010

ABSTRACT

The paper describes an algorithm and computational system used to estimate the spatial chaos of magnetic resonance images of patients with gastric cancer and the quantum chaos of mechanoemission in blood.


Subject(s)
Blood Physiological Phenomena , Magnetic Resonance Imaging/methods , Stomach Neoplasms/diagnosis , Algorithms , Computational Biology/methods , Humans , Male , Middle Aged , Neoplasm Staging , Nonlinear Dynamics , Reference Values , Stomach Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...