Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 145(36): 19894-19902, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37656631

ABSTRACT

Azonium ions formed by the protonation of tetra-ortho-methoxy-substituted aminoazobenzenes photoisomerize with red light under physiological conditions. This property makes them attractive as molecular tools for the photocontrol of physiological processes, for example, in photopharmacology. However, a mechanistic understanding of the photoisomerization process and subsequent thermal relaxation is necessary for the rational application of these compounds as well as for guiding the design of derivatives with improved properties. Using a combination of sub-ps/ns transient absorption measurements and quantum chemical calculations, we show that the absorption of a photon by the protonated E-H+ form of the photoswitch causes rapid (ps) isomerization to the protonated Z-H+ form, which can also absorb red light. Proton transfer to solvent then occurs on a microsecond time scale, leading to an equilibrium between Z and Z-H+ species, the position of which depends on the solution pH. Whereas thermal isomerization of the neutral Z form to the neutral E form is slow (∼0.001 s-1), thermal isomerization of Z-H+ to E-H+ is rapid (∼100 s-1), so the solution pH also governs the rate at which E/E-H+ concentrations are restored after a light pulse. This analysis provides the first complete mechanistic picture that explains the observed intricate photoswitching behavior of azonium ions at a range of pH values. It further suggests features of azonium ions that could be targeted for improvement to enhance the applicability of these compounds for the photocontrol of biomolecules.

2.
ACS Omega ; 8(33): 30768-30775, 2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37636914

ABSTRACT

Silicon nitride, silicon oxide, and silicon oxynitride thin films were deposited on the Si substrate by inductively coupled plasma chemical vapor deposition and annealed at 1100 °C for 3 min in an Ar environment. Silicon nitride and silicon oxide films deposited at ratios of the reactant flow rates of SiH4/N2 = 1.875 and SiH4/N2O = 3, respectively, were Si-rich, while Si excess for the oxynitride film (SiH4/N2/N2O = 3:2:2) was not found. Annealing resulted in a thickness decrease and structural transformation for SiOx and SiNx films. Nanocrystalline phases of Si as well as α- and ß-Si3N4 were found in the annealed silicon nitride film. Compared to oxide and nitride films, the oxynitride film is the least susceptible to change during annealing. The relationship between the structure, composition, and optical properties of the Si-based films has been revealed. It has been shown that the calculated optical parameters (refractive index, extinction coefficient) reflect structural peculiarities of the as-deposited and annealed films.

3.
Materials (Basel) ; 16(15)2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37570129

ABSTRACT

In this article, the experimental measurements of the absorption/desorption P-C-T isotherms of hydrogen in the LaNi4.4Fe0.3Al0.3 alloy at different temperatures and constant hydrogen pressure have been studied using a numerical model. The mathematics equations of this model contain parameters, such as the two terms, nα and nß, representing the numbers of hydrogen atoms per site; Nmα and Nmß are the receptor sites' densities, and the energetic parameters are Pα and Pß. All these parameters are derived by numerically adjusting the experimental data. The profiles of these parameters during the absorption/desorption process are studied as a function of temperature. Thereafter, we examined the evolution of the internal energy versus temperature, which typically ranges between 138 and 181 kJmol-1 for the absorption process and between 140 and 179 kJmol-1 for the desorption process. The evolution of thermodynamic functions with pressure, for example, entropy, Gibbs free energy (G), and internal energy, are determined from the experimental data of the hydrogen absorption and desorption isotherms of the LaNi4.4Al0.3Fe0.3 alloy.

4.
Diagnostics (Basel) ; 11(4)2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33920827

ABSTRACT

INTRODUCTION: Despite the introduction of increasingly multifaceted diagnostic techniques and the general advances in emergency abdominal and vascular surgery, the outcome of treatment of patients with acute impaired intestinal circulation remains unsatisfactory. The non-invasive and high-resolution technique of optical coherence tomography (OCT) can be used intraoperatively to assess intestine viability and associated conditions that frequently emerge under conditions of impaired blood circulation. This study aims to demonstrate the effectiveness of multimodal (MM) OCT for intraoperative diagnostics of both the microstructure (cross-polarization OCT mode) and microcirculation (OCT angiography mode) of the small intestine wall in patients with acute mesenteric ischemia (AMI). METHODS AND PARTICIPANTS: A total of 18 patients were enrolled in the study. Nine of them suffered from AMI in segments II-III of the superior mesenteric artery (AMI group), whereby the ischemic segments of the intestine were examined. Nine others were operated on for adenocarcinoma of the colon (control group), thus allowing areas of their normal small intestine to be examined for comparison. Data on the microstructure and microcirculation in the walls of the small intestine were obtained intraoperatively from the side of the serous membrane using the MM OCT system (IAP RAS, Russia) before bowel resection. The MM OCT data were compared with the results of histological examination. RESULTS: The study finds that MM OCT visualized the damage to serosa, muscularis externa, and blood vessels localized in these layers in 100% of AMI cases. It also visualized the submucosa in 33.3% of AMI cases. The MM OCT images of non-ischemic (control group), viable ischemic, and necrotic small intestines (AMI group) differed significantly across stratification of the distinguishable layers, the severity of intermuscular fluid accumulations, and the type and density of the vasculature. CONCLUSION: The MM OCT diagnostic procedure optimally meets the requirements of emergency surgery. Data on the microstructure and microcirculation of the intestinal wall can be obtained simultaneously in real time without requiring contrast agent injections. The depth of visualization of the intestinal wall from the side of the serous membrane is sufficient to assess the volume of the affected tissues. However, the methodology for obtaining MM OCT data needs to be improved to minimize the motion artefacts generated in actual clinical conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...