Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Nanomaterials (Basel) ; 13(19)2023 Oct 06.
Article in English | MEDLINE | ID: mdl-37836353

ABSTRACT

Metal-Organic CVD method (MOCVD) allows for deposition of ultrathin 2D transition metal dichalcogenides (TMD) films of electronic quality onto wafer-scale substrates. In this work, the effect of temperature on structure, chemical states, and electronic qualities of the MOCVD MoS2 films were investigated. The results demonstrate that the temperature increase in the range of 650 °C to 950 °C results in non-monotonic average crystallite size variation. Atomic force microscopy (AFM), transmission electron microscopy (TEM), and Raman spectroscopy investigation has established the film crystal structure improvement with temperature increase in this range. At the same time, X-Ray photoelectron spectroscopy (XPS) method allowed to reveal non-stoichiometric phase fraction increase, corresponding to increased sulfur vacancies (VS) concentration from approximately 0.9 at.% to 3.6 at.%. Established dependency between the crystallite domains size and VS concentration suggests that these vacancies are form predominantly at the grain boundaries. The results suggest that an increased Vs concentration and enhanced charge carriers scattering at the grains' boundaries should be the primary reasons of films' resistivity increase from 4 kΩ·cm to 39 kΩ·cm.

2.
Nanomaterials (Basel) ; 13(9)2023 Apr 25.
Article in English | MEDLINE | ID: mdl-37177004

ABSTRACT

Materials with high optical constants are of paramount importance for efficient light manipulation in nanophotonics applications. Recent advances in materials science have revealed that van der Waals (vdW) materials have large optical responses owing to strong in-plane covalent bonding and weak out-of-plane vdW interactions. However, the optical constants of vdW materials depend on numerous factors, e.g., synthesis and transfer method. Here, we demonstrate that in a broad spectral range (290-3300 nm) the refractive index n and the extinction coefficient k of Bi2Se3 are almost independent of synthesis technology, with only a ~10% difference in n and k between synthesis approaches, unlike other vdW materials, such as MoS2, which has a ~60% difference between synthesis approaches. As a practical demonstration, we showed, using the examples of biosensors and therapeutic nanoparticles, that this slight difference in optical constants results in reproducible efficiency in Bi2Se3-based photonic devices.

3.
ACS Omega ; 8(19): 16579-16586, 2023 May 16.
Article in English | MEDLINE | ID: mdl-37214699

ABSTRACT

Heterogeneous nanostructures composed of metastable tetragonal 1T-MoS2 and stable hexagonal 2H-MoS2 phases are highly promising for a wide range of applications, including catalysis and ion batteries, due to the high electrical conductivity and catalytic activity of the 1T phase. However, a controllable synthesis of stabilized 1T-MoS2 films over the wafer-scale area is challenging. In this work, a metal-organic chemical vapor deposition process allowing us to obtain ultrathin MoS2 films containing both 1T and 2H phases and control their ratio through rhenium doping was suggested. As a result, Mo1-xRexS2 films with a 1T-MoS2 fraction up to ≈30% were obtained, which were relatively stable under normal conditions for a long time. X-ray photoelectron spectroscopy and Raman spectroscopy also indicated that the 1T-MoS2 phase fraction increased with rhenium concentration increase saturating at Re concentrations above 5 at. %. Also, its concentration was found to significantly affect the film resistivity. Thus, the resistivity of the film containing approximately 30% of the 1T phase was about 130 times lower than that of the film without the 1T phase.

4.
Nanomaterials (Basel) ; 12(19)2022 Sep 20.
Article in English | MEDLINE | ID: mdl-36234390

ABSTRACT

Atomically thin molybdenum disulfide (MoS2) is a promising channel material for next-generation thin-body field-effect transistors (FETs), which makes the development of methods allowing for its controllable synthesis over a large area an essential task. Currently, one of the cost-effective ways of its synthesis is the sulfurization of preliminary grown oxide- or metallic film. However, despite apparent progress in this field, the electronic quality of the obtained MoS2 is inferior to that of exfoliated samples, making the detailed investigation of the sulfurized films' properties of great interest. In this work, we synthesized continuous MoS2 films with a thickness of ≈2.2 nm via the sulfurization of an atomic-layer-deposited MoO3 layer. X-ray photoelectron spectroscopy, transmission electron microscopy, and Raman spectroscopy indicated the appropriate chemical composition and microcrystalline structure of the obtained MoS2 films. The semiconductor quality of the synthesized films was confirmed by the fabrication of a field-effect transistor (FET) with an Ion/Ioff ratio of ≈40, which was limited primarily by the high contact resistance. The Schottky barrier height at the Au/MoS2 interface was found to be ≈1.2 eV indicating the necessity of careful contact engineering. Due to its simplicity and cost-effectiveness, such a technique of MoS2 synthesis still appears to be highly attractive for its applications in next-generation microelectronics. Therefore, further research of the electronic properties of films obtained via this technique is required.

5.
Nanomaterials (Basel) ; 12(10)2022 May 13.
Article in English | MEDLINE | ID: mdl-35630892

ABSTRACT

Owing to a strong photothermal response in the near-IR spectral range and very low toxicity, titanium nitride (TiN) nanoparticles (NPs) synthesized by pulsed laser ablation in liquids (PLAL) present a novel appealing object for photo-induced therapy of cancer, but the properties of these NPs still require detailed investigation. Here, we have elaborated methods of femtosecond laser ablation from the TiN target in a variety of liquid solutions, including acetonitrile, dimethylformamide, acetone, water, and H2O2, to synthesize TiN NPs and clarify the effect of liquid type on the composition and properties of the formed NPs. The ablation in all solvents led to the formation of spherical NPs with a mean size depending on the liquid type, while the composition of the NPs ranged from partly oxidized TiN to almost pure TiO2, which conditioned variations of plasmonic peak in the region of relative tissue transparency (670-700 nm). The degree of NP oxidation depended on the solvent, with much stronger oxidation for NPs prepared in aqueous solutions (especially in H2O2), while the ablation in organic solvents resulted in a partial formation of titanium carbides as by-products. The obtained results contribute to better understanding of the processes in reactive PLAL and can be used to design TiN NPs with desired properties for biomedical applications.

6.
Materials (Basel) ; 16(1)2022 Dec 28.
Article in English | MEDLINE | ID: mdl-36614621

ABSTRACT

The development and production of thin-film coatings having very low friction is an urgent problem of materials science. One of the most promising solutions is the fabrication of special nanocomposites containing transition-metal dichalcogenides and various carbon-based nanophases. This study aims to explore the influence of graphite-like carbon (g-C) and Ni interface layers on the tribological properties of thin WS2 films. Nanocrystalline WS2 films were created by reactive pulsed laser deposition (PLD) in H2S at 500 °C. Between the two WS2 nanolayers, g-C and Ni nanofilms were fabricated by PLD at 700 and 22 °C, respectively. Tribotesting was carried out in a nitrogen-enriched atmosphere by the reciprocal sliding of a steel counterbody under a relatively low load of 1 N. For single-layer WS2 films, the friction coefficient was ~0.04. The application of g-C films did not noticeably improve the tribological properties of WS2-based films. However, the application of thin films of g-C and Ni reduced the friction coefficient to 0.013, thus, approaching superlubricity. The island morphology of the Ni nanofilm ensured WS2 retention and altered the contact area between the counterbody and the film surface. The catalytic properties of nickel facilitated the introduction of S and H atoms into g-C. The sliding of WS2 nanoplates against an amorphous g-C(S, H) nanolayer caused a lower coefficient of friction than the relative sliding of WS2 nanoplates. The detected behavior of the prepared thin films suggests a new strategy of designing antifriction coatings for practical applications and highlights the ample opportunities of laser techniques in the formation of promising thin-film coatings.

7.
ACS Omega ; 6(50): 34429-34437, 2021 Dec 21.
Article in English | MEDLINE | ID: mdl-34963928

ABSTRACT

Ultrathin WS2 films are promising functional materials for electronic and optoelectronic devices. Therefore, their synthesis over a large area, allowing control over their thickness and structure, is an essential task. In this work, we investigated the influence of atomic layer deposition (ALD)-grown WO3 seed-film thickness on the structural and electrical properties of WS2 nanosheets obtained via a sulfurization technique. Transmission electron microscopy indicated that the thinnest (1.9 nm) film contains rather big (up to 50 nm) WS2 grains in the amorphous matrix. The signs of incomplete sulfurization, namely, oxysulfide phase presence, were found by X-ray photoemission spectroscopy analysis. The increase in the seed-film thickness of up to 4.7 nm resulted in a visible grain size decrease down to 15-20 nm, which was accompanied by defect suppression. The observed structural evolution affected the film resistivity, which was found to decrease from ∼106 to 103 (µΩ·cm) within the investigated thickness range. These results show that the thickness of the ALD-grown seed layer may strongly affect the resultant WS2 structure and properties. Most valuably, it was shown that the growth of the thinnest WS2 film (3-4 monolayers) is most challenging due to the amorphous intergrain phase formation, and further investigations focused on preventing the intergrain phase formation should be conducted.

8.
Nanomaterials (Basel) ; 11(12)2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34947618

ABSTRACT

Noble transition metal dichalcogenides (TMDCs) such as PtS2 and PtSe2 show significant potential in a wide range of optoelectronic and photonic applications. Noble TMDCs, unlike standard TMDCs such as MoS2 and WS2, operate in the ultrawide spectral range from ultraviolet to mid-infrared wavelengths; however, their properties remain largely unexplored. Here, we measured the broadband (245-3300 nm) optical constants of ultrathin PtS2 and PtSe2 films to eliminate this gap and provide a foundation for optoelectronic device simulation. We discovered their broadband absorption and high refractive index both theoretically and experimentally. Based on first-principle calculations, we also predicted their giant out-of-plane optical anisotropy for monocrystals. As a practical illustration of the obtained optical properties, we demonstrated surface plasmon resonance biosensors with PtS2 or PtSe2 functional layers, which dramatically improves sensor sensitivity by 60 and 30%, respectively.

9.
Nanomaterials (Basel) ; 11(6)2021 May 27.
Article in English | MEDLINE | ID: mdl-34071775

ABSTRACT

Two-dimensional layers of transition-metal dichalcogenides (TMDs) have been widely studied owing to their exciting potential for applications in advanced electronic and optoelectronic devices. Typically, monolayers of TMDs are produced either by mechanical exfoliation or chemical vapor deposition (CVD). While the former produces high-quality flakes with a size limited to a few micrometers, the latter gives large-area layers but with a nonuniform surface resulting from multiple defects and randomly oriented domains. The use of epitaxy growth can produce continuous, crystalline and uniform films with fewer defects. Here, we present a comprehensive study of the optical and structural properties of a single layer of MoS2 synthesized by molecular beam epitaxy (MBE) on a sapphire substrate. For optical characterization, we performed spectroscopic ellipsometry over a broad spectral range (from 250 to 1700 nm) under variable incident angles. The structural quality was assessed by optical microscopy, atomic force microscopy, scanning electron microscopy, and Raman spectroscopy through which we were able to confirm that our sample contains a single-atomic layer of MoS2 with a low number of defects. Raman and photoluminescence spectroscopies revealed that MBE-synthesized MoS2 layers exhibit a two-times higher quantum yield of photoluminescence along with lower photobleaching compared to CVD-grown MoS2, thus making it an attractive candidate for photonic applications.

10.
Nanomaterials (Basel) ; 11(5)2021 May 07.
Article in English | MEDLINE | ID: mdl-34066979

ABSTRACT

Graphene is a promising building block material for developing novel photonic and optoelectronic devices. Here, we report a comprehensive experimental study of chemical-vapor deposited (CVD) monolayer graphene's optical properties on three different substrates for ultraviolet, visible, and near-infrared spectral ranges (from 240 to 1000 nm). Importantly, our ellipsometric measurements are free from the assumptions of additional nanometer-thick layers of water or other media. This issue is critical for practical applications since otherwise, these additional layers must be included in the design models of various graphene photonic, plasmonic, and optoelectronic devices. We observe a slight difference (not exceeding 5%) in the optical constants of graphene on different substrates. Further, the optical constants reported here are very close to those of graphite, which hints on their applicability to multilayer graphene structures. This work provides reliable data on monolayer graphene's optical properties, which should be useful for modeling and designing photonic devices with graphene.

SELECTION OF CITATIONS
SEARCH DETAIL
...