Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Phys Lipids ; 130(2): 117-26, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15172828

ABSTRACT

Total synthesis of (5Z,8Z,11Z,14Z)-18- and 19-azidoeicosa-5,8,11,14-tetraenoic acids and their [5,6,8,9,11,12,14,15-3H8]-analogues via the corresponding p-toluenesulphonates is reported. This synthetic approach allows the preparation of radioactively labelled arachidonic acid derivatives following a common synthetic route. Activity assays indicated that 15-lipoxygenases may tolerate the azido group in the substrate binding pocket and thus, radioactively labelled azido compounds may be used as photo-affinity probes to investigate mechanistic features of eicosanoid biosynthesis.


Subject(s)
Arachidonic Acid/chemistry , Arachidonic Acid/chemical synthesis , Animals , Arachidonate 15-Lipoxygenase/metabolism , Arachidonic Acid/metabolism , Kinetics , Molecular Structure , Oxidation-Reduction , Rabbits , Reticulocytes/enzymology , Glycine max/enzymology
2.
Bioorg Med Chem ; 10(7): 2335-43, 2002 Jul.
Article in English | MEDLINE | ID: mdl-11983531

ABSTRACT

(5Z,8Z,11Z,13E)-15-Hydroxy-5,8,11,13-eicosatetraenoic acid (15-HETE) is not well oxygenated by arachidonate 15-lipoxygenases because of two structural reasons: (i) it contains a hydrophilic OH-group in close proximity to its methyl end and (ii) it lacks the bisallylic methylene at C(13). We synthesized racemic (5Z,8Z,11Z,14Z)-16-hydroxy-5,8,11,14-eicosatetraenoic acid (16-HETE) which still contains the bisallylic C(13), separated the enantiomers reaching an optical purity of >99% and tested them as substrates for 5- and 15-lipoxygenases. Our synthetic pathway, which is based on stereospecific hydrogenation of a polyacetylenic precursor, yielded substantial amounts (30%) of 14,15-dehydro-16-HETE in addition to 16-HETE. When 16-HETE was tested as lipoxygenase substrate, we found that it is well oxygenated by the soybean 15-lipoxygenase and by the recombinant human 5-lipoxygenase. Analysis of the reaction products suggested an arachidonic acid-like alignment at the active site of the two enzymes. In contrast, the product pattern of 16-HETE methyl ester oxygenation by the soybean lipoxygenase (5-lipoxygenation) may be explained by an inverse head to tail substrate orientation.


Subject(s)
Hydroxyeicosatetraenoic Acids/chemical synthesis , Lipoxygenase Inhibitors/chemical synthesis , Lipoxygenase/chemistry , Chromatography, High Pressure Liquid , Hydroxyeicosatetraenoic Acids/chemistry , Hydroxyeicosatetraenoic Acids/pharmacology , Lipoxygenase Inhibitors/chemistry , Lipoxygenase Inhibitors/pharmacology , Spectrum Analysis , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...