Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Sci Rep ; 13(1): 17622, 2023 10 17.
Article in English | MEDLINE | ID: mdl-37848549

ABSTRACT

Population density is known to affect the health and survival of many species, and is especially important for social animals. In mice, living in crowded conditions results in the disruption of social interactions, chronic stress, and immune and reproductive suppression; however, the underlying mechanisms remain unclear. Here, we investigated the role of chemosignals in the regulation of mouse physiology and behavior in response to social crowding. The pheromone 2,5-dimethylpyrazine (2,5-DMP), which is released by female mice in crowded conditions, induced aversion, glucocorticoid elevation and, when chronic, resulted in reproductive and immune suppression. 2,5-DMP olfaction induced genome destabilization in bone marrow cells in a stress-dependent manner, providing a plausible mechanism for crowding-induced immune dysfunction. Interestingly, the genome-destabilizing effect of 2,5-DMP was comparable to a potent mouse stressor (immobilization), and both stressors led to correlated expression changes in genes regulating cellular stress response. Thus, our findings demonstrate that, in mice, the health effects of crowding may be explained at least in part by chemosignals and also propose a significant role of stress and genome destabilization in the emergence of crowding effects.


Subject(s)
Crowding , Pheromones , Mice , Male , Female , Animals , Reproduction , Population Density , Genomic Instability
2.
Nanomedicine ; 49: 102665, 2023 04.
Article in English | MEDLINE | ID: mdl-36822334

ABSTRACT

The silica nanoparticles (SNs) co-doped with paramagnetic ([Mn(HL)]n-,) and luminescent ([Ru(dipy)3]2+) complexes are represented. The specific distribution of [Mn(HL)]n- within the SNs allows to achieve about ten-fold enhancing in magnetic relaxivities in comparison with those of [Mn(HL)]n- in solutions. The leaching of [Mn(HL)]n- from the shell can be minimized through the co-doping of [Ru(dipy)3]2+ into the core of the SNs. The co-doped SNs exhibit colloid stability in aqueous solutions, including those modeling a blood serum. The surface of the co-doped SNs was also decorated by amino- and carboxy-groups. The cytotoxicity, hemoagglutination and hemolytic activities of the co-doped SNs are on the levels convenient for "in vivo" studies, although the amino-decorated SNs cause more noticeable agglutination and suppression of cell viability. The co-doped SNs being intravenously injected into mice allows to reveal their biodistribution in both ex vivo and in vivo conditions through confocal microscopy and magnetic resonance imaging correspondingly.


Subject(s)
Nanoparticles , Silicon Dioxide , Animals , Mice , Tissue Distribution , Contrast Media , Magnetic Resonance Imaging/methods
3.
Plants (Basel) ; 11(12)2022 Jun 08.
Article in English | MEDLINE | ID: mdl-35736684

ABSTRACT

In plants, water flows are the major driving force behind growth and play a crucial role in the life cycle. To study hydrodynamics, methods based on tracking small particles inside water flows attend a special place. Thanks to these tools, it is possible to obtain information about the dynamics of the spatial distribution of the flux characteristics. In this paper, using contrast-enhanced magnetic resonance imaging (MRI), we show that gadolinium chelate, used as an MRI contrast agent, marks the structural characteristics of the xylem bundles of maize stem nodes and internodes. Supplementing MRI data, the high-precision visualization of xylem vessels by laser scanning microscopy was used to reveal the structural and dimensional characteristics of the stem vascular system. In addition, we propose the concept of using prototype "Y-type xylem vascular connection" as a model of the elementary connection of vessels within the vascular system. A Reynolds number could match the microchannel model with the real xylem vessels.

4.
Front Bioeng Biotechnol ; 10: 772981, 2022.
Article in English | MEDLINE | ID: mdl-35360387

ABSTRACT

In our previous study, we showed that discarded cardiac tissue from the right atrial appendage and right ventricular myocardium is an available source of functional endothelial and smooth muscle cells for regenerative medicine and tissue engineering. In the study, we aimed to find out what benefits are given by vascular cells from cardiac explants used for seeding on vascular patches engrafted to repair vascular defects in vivo. Additionally, to make the application of these cells safer in regenerative medicine we tested an in vitro approach that arrested mitotic division to avoid the potential tumorigenic effect of dividing cells. A tissue-engineered construction in the form of a patch based on a polycaprolactone-gelatin scaffold and seeded with endothelial and smooth muscle cells was implanted into the abdominal aorta of immunodeficient SCID mice. Aortic patency was assessed using ultrasound, MRI, immunohistochemical and histological staining. Endothelial and smooth muscle cells were treated with mitomycin C at a therapeutic concentration of 10 µg/ml for 2 h with subsequent analysis of cell proliferation and function. The absence of the tumorigenic effect of mitomycin C-treated cells, as well as their angiogenic potential, was examined by injecting them into immunodeficient mice. Cell-containing patches engrafted in the abdominal aorta of immunodeficient mice form the vessel wall loaded with the appropriate cells and extracellular matrix, and do not interfere with normal patency. Endothelial and smooth muscle cells treated with mitomycin C show no tumorigenic effect in the SCID immunodeficient mouse model. During in vitro experiments, we have shown that treatment with mitomycin C does not lead to a decrease in cell viability. Despite the absence of proliferation, mitomycin C-treated vascular cells retain specific cell markers, produce specific extracellular matrix, and demonstrate the ability to stimulate angiogenesis in vivo. We pioneered an approach to arresting cell division with mitomycin C in endothelial and smooth muscle cells from cardiac explant, which prevents the risk of malignancy from dividing cells in vascular surgery. We believe that this approach to the fabrication of tissue-engineered constructs based on mitotically inactivated cells from waste postoperative material may be valuable to bring closer the development of safe cell products for regenerative medicine.

5.
ACS Appl Mater Interfaces ; 13(31): 36800-36815, 2021 Aug 11.
Article in English | MEDLINE | ID: mdl-34324807

ABSTRACT

Magnetic Fe3O4 nanoparticles (MNPs) are often used to design agents enhancing contrast in magnetic resonance imaging (MRI) that can be considered as one of the efficient methods for cancer diagnostics. At present, increasing the specificity of the MRI contrast agent accumulation in tumor tissues remains an open question and attracts the attention of a wide range of researchers. One of the modern methods for enhancing the efficiency of contrast agents is the use of molecules for tumor acidic microenvironment targeting, for example, pH-low insertion peptide (pHLIP). We designed novel organosilicon MNPs covered with poly(ethylene glycol) (PEG) and covalently modified by pHLIP. To study the specific features of the binding of pHLIP-modified MNPs to cells, we also obtained nanoconjugates with Cy5 fluorescent dye embedded in the SiO2 shell. The nanoconjugates obtained were characterized by transmission electron microscopy (TEM), attenuated total reflection (ATR), diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), dynamic light scattering (DLS), UV and fluorescence spectrometry, thermogravimetric analysis (TGA), CHN elemental analyses, and vibrating sample magnetometry. Low cytotoxicity and high specificity of cellular uptake of pHLIP-modified MNPs at pH 6.4 versus 7.4 (up to 23-fold) were demonstrated in vitro. The dynamics of the nanoconjugate accumulation in the 4T1 breast cancer orthotopically grown in BALB/c mice and MDA-MB231 xenografts was evaluated in MRI experiments. Biodistribution and biocompatibility studies of the obtained nanoconjugate showed no pathological change in organs and in the blood biochemical parameters of mice after MNP administration. A high accumulation rate of pHLIP-modified MNPs in tumor compared with PEGylated MNPs after their intravenous administration was demonstrated. Thus, we propose a promising approach to design an MRI agent with the tumor acidic microenvironment targeting ability.


Subject(s)
Contrast Media/chemistry , Immobilized Proteins/chemistry , Magnetite Nanoparticles/chemistry , Neoplasms/diagnostic imaging , Peptides/chemistry , Amino Acid Sequence , Animals , Cell Line, Tumor , Contrast Media/toxicity , Female , Humans , Hydrogen-Ion Concentration , Immobilized Proteins/toxicity , Magnetic Resonance Imaging , Magnetite Nanoparticles/toxicity , Mice, Inbred BALB C , Peptides/toxicity , Silicon Dioxide/chemistry , Silicon Dioxide/toxicity
6.
Biomedicines ; 9(7)2021 Jun 23.
Article in English | MEDLINE | ID: mdl-34201895

ABSTRACT

Boron neutron capture therapy (BNCT) is based on the ability of the boron-10 (10B) isotope to capture epithermal neutrons, as a result of which the isotope becomes unstable and decays into kinetically active elements that destroy cells where the nuclear reaction has occurred. The boron-carrying compounds-L-para-boronophenylalanine (BPA) and sodium mercaptoundecahydro-closo-dodecaborate (BSH)-have low toxicity and, today, are the only representatives of such compounds approved for clinical trials. For the effectiveness and safety of BNCT, a low boron content in normal tissues and substantially higher content in tumor tissue are required. This study evaluated the boron concentration in intracranial grafts of human glioma U87MG cells and normal tissues of the brain and other organs of mice at 1, 2.5 and 5 h after administration of the boron-carrying compounds. A detailed statistical analysis of the boron biodistribution dynamics was performed to find a 'window of opportunity' for BNCT. The data demonstrate variations in boron accumulation in different tissues depending on the compound used, as well as significant inter-animal variation. The protocol of administration of BPA and BSH compounds used did not allow achieving the parameters necessary for the successful course of BNCT in a glioma orthotopic xenograft mouse model.

7.
Clin Cosmet Investig Dermatol ; 14: 187-196, 2021.
Article in English | MEDLINE | ID: mdl-33679135

ABSTRACT

PURPOSE: The purpose of this study was to assess the capability of recombinant angiogenin isolated from Pichia pastoris yeasts to stimulate regenerative processes in the dermis of experimental animals. PATIENTS AND METHODS: Wistar rats were administered with recombinant angiogenin intracutaneously. Morphological examination of the skin and the assessment of the proliferative activity of the epidermal cells were carried out. Additionally, cytokine production by human whole blood cells exposed to angiogenin was analyzed ex vivo. RESULTS: Administration of angiogenin stimulates collagen fiber formation and angiogenesis. This stimulation is tightly associated with an increase in the number of fibroblasts, an increased numerical density of dermal blood vessels and an increased density of collagen fibers; also, it activates the proliferation of basal cells. Angiogenin induces the production of MCP, IL-8, IL-6, IL-1ß, TNF-α, IL-10, TGF-ß, and VEGF by blood cells. CONCLUSION: The results obtained indicate a broad spectrum of actions of recombinant angiogenin during regenerative processes in the basal layer of the dermis.

8.
Nanotoxicology ; 14(10): 1432-1444, 2020 12.
Article in English | MEDLINE | ID: mdl-33320703

ABSTRACT

Exposure to nanomaterials is considered as one of the risk factors for neurodegenerative pathology. In vitro inorganic nanoparticles (NPs) absorb intrinsically disordered proteins, many of which are the constituents of stress-granules (SGs). SGs normally form in response to cellular stress and, here, we addressed whether selected inorganic NPs could trigger SGs formation in cells. To this end, we have tested a series of inorganic NPs for their ability to induce SGs formation in human glioblastoma and fibroblast cell lines. Among tested NPs, only Mn3O4 NPs triggered SGs formation in cell-type-specific and metabolic-dependent manner. In human glioblastoma U87 MG cell line, Mn3O4 NPs entered cells within minutes and resided inside intracellular vesicles for at least 48 h. Mn3O4 NPs induced a strong reduction in oxidative phosphorylation rate, but not glycolysis. We showed that Mn3O4 NPs slowly dissolve producing a local net of Mn2+ cations, which are known to inhibit oxidative phosphorylation. Indeed, direct incubation of cells with equimolar amounts of Mn2+ cations triggered SGs formation and reduced cellular respiration rate. However, while SGs formed in response to Mn3O4 NPs persisted for hours, SGs formation by Mn2+ peaked and dropped within minutes. Finally, Mn3O4 NPs mediated SGs formation via the phosphorylation of eIF2α. Thus, we conclude that exposure of U87 MG cells to Mn3O4 NPs caused a 'Trojan-horse' prolonged SGs response.


Subject(s)
Fibroblasts/drug effects , Nanoparticles/toxicity , Oxidative Stress/drug effects , Oxides/toxicity , Animals , Cell Culture Techniques , Cell Line, Tumor , Cell Survival/drug effects , Cytoplasmic Granules/metabolism , Fibroblasts/metabolism , Glycolysis/drug effects , Humans , Manganese Compounds , Mitochondria/drug effects , Mitochondria/metabolism , Particle Size , Surface Properties
9.
Reproduction ; 160(1): 117-127, 2020 07.
Article in English | MEDLINE | ID: mdl-32485669

ABSTRACT

The life-history theory suggests that parental experience of the environment is passed to offspring, which allows them to adapt to prevailing conditions. This idea is supported from the mother's side, but to a much less extent from the father's side. Here, we investigated the effect of immunising fathers on pre- and neonatal development and on immune and neuroendocrine phenotypes of their offspring in C57BL/6J mice. Nine days before mating, fathers were intraperitoneally injected with the immunogenic protein keyhole limpet hemocyanin (KLH). Females mated with immunised males had less pre-weaning mortality of newborns compared to those mated with control males. Although the antibody response to KLH was similar for the male offspring of control and immunised fathers, the mass indexes of their main immune organs and their androgen response differed significantly. The mass indexes of the thymus and spleen in adult male offspring of immunised fathers were higher compared with the control offspring. The plasma testosterone levels were significantly decreased after KLH administration in the male offspring of control but not of immunised fathers. This was correlated with changes in sperm average path and straight-line velocities. Finally, excitatory neurotransmitters prevailed over inhibitory ones in the amygdala of the progeny of immunised fathers, while in control offspring, the opposite occurred. This is indicative of complex behavioural changes in the offspring of immunised fathers, including sexual ones. Therefore, the paternal experience of foreign antigens modulates the immune and neuroendocrine systems of their progeny, suggesting possible survival and reproductive adaptations to parasitic pressure.


Subject(s)
Cell Communication , Hemocyanins/adverse effects , Immunization/adverse effects , Phenotype , Prenatal Exposure Delayed Effects/pathology , Reproduction , Spermatozoa/physiology , Animals , Animals, Newborn , Female , Male , Mice , Mice, Inbred C57BL , Pregnancy , Prenatal Exposure Delayed Effects/etiology , Spermatozoa/cytology
10.
Sci Rep ; 7: 46686, 2017 04 24.
Article in English | MEDLINE | ID: mdl-28436460

ABSTRACT

Cuprizone-induced demyelination in mice is a frequently used model in preclinical multiple sclerosis research. A recent quantitative clinically-targeted MRI method, fast macromolecular proton fraction (MPF) mapping demonstrated a promise as a myelin biomarker in human and animal studies with a particular advantage of sensitivity to both white matter (WM) and gray matter (GM) demyelination. This study aimed to histologically validate the capability of MPF mapping to quantify myelin loss in brain tissues using the cuprizone demyelination model. Whole-brain MPF maps were obtained in vivo on an 11.7T animal MRI scanner from 7 cuprizone-treated and 7 control С57BL/6 mice using the fast single-point synthetic-reference method. Brain sections were histologically stained with Luxol Fast Blue (LFB) for myelin quantification. Significant (p < 0.05) demyelination in cuprizone-treated animals was found according to both LFB staining and MPF in all anatomical structures (corpus callosum, anterior commissure, internal capsule, thalamus, caudoputamen, and cortex). MPF strongly correlated with quantitative histology in all animals (r = 0.95, p < 0.001) as well as in treatment and control groups taken separately (r = 0.96, p = 0.002 and r = 0.93, p = 0.007, respectively). Close agreement between histological myelin staining and MPF suggests that fast MPF mapping enables robust and accurate quantitative assessment of demyelination in both WM and GM.


Subject(s)
Cuprizone/toxicity , Demyelinating Diseases/diagnostic imaging , Disease Models, Animal , Macromolecular Substances/metabolism , Magnetic Resonance Imaging/methods , Myelin Sheath/metabolism , Animals , Brain/diagnostic imaging , Brain/pathology , Brain Mapping/methods , Demyelinating Diseases/chemically induced , Gray Matter/diagnostic imaging , Gray Matter/pathology , Humans , Indoles/chemistry , Mesothelin , Mice, Inbred C57BL , Myelin Sheath/pathology , Protons , White Matter/diagnostic imaging , White Matter/pathology
11.
ACS Nano ; 11(2): 1328-1339, 2017 02 28.
Article in English | MEDLINE | ID: mdl-28122180

ABSTRACT

Nanoparticles are capable of penetrating cells, but little is known about the way they interact with intracellular proteome. Here we show that inorganic nanoparticles associate with low-complexity, intrinsically disordered proteins from HeLa cytosolic protein extracts in nondenaturing in vitro nanoparticle pull-down assays. Intrinsic protein disorder associates with structural mobility, suggesting that side-chain flexibility plays an important role in the driving of a protein to nanoparticle absorption. Disordered protein domains are often found in a diverse group of RNA-binding proteins. Consequently, the nanoparticle-associated proteomes were enriched in subunits of RNA-processing protein complexes. In turn, this indicates that within a cell, nanoparticles might interfere with protein synthesis triggering a range of cellular responses.


Subject(s)
Nanoparticles/chemistry , RNA-Binding Proteins/chemistry , HeLa Cells , Humans , Mass Spectrometry , Proteomics , RNA-Binding Proteins/isolation & purification
12.
Nucleic Acids Res ; 44(3): 1036-51, 2016 Feb 18.
Article in English | MEDLINE | ID: mdl-26429969

ABSTRACT

Nucleosomal DNA is thought to be generally inaccessible to DNA-binding factors, such as micrococcal nuclease (MNase). Here, we digest Drosophila chromatin with high and low concentrations of MNase to reveal two distinct nucleosome types: MNase-sensitive and MNase-resistant. MNase-resistant nucleosomes assemble on sequences depleted of A/T and enriched in G/C-containing dinucleotides, whereas MNase-sensitive nucleosomes form on A/T-rich sequences found at transcription start and termination sites, enhancers and DNase I hypersensitive sites. Estimates of nucleosome formation energies indicate that MNase-sensitive nucleosomes tend to be less stable than MNase-resistant ones. Strikingly, a decrease in cell growth temperature of about 10°C makes MNase-sensitive nucleosomes less accessible, suggesting that observed variations in MNase sensitivity are related to either thermal fluctuations of chromatin fibers or the activity of enzymatic machinery. In the vicinity of active genes and DNase I hypersensitive sites nucleosomes are organized into periodic arrays, likely due to 'phasing' off potential barriers formed by DNA-bound factors or by nucleosomes anchored to their positions through external interactions. The latter idea is substantiated by our biophysical model of nucleosome positioning and energetics, which predicts that nucleosomes immediately downstream of transcription start sites are anchored and recapitulates nucleosome phasing at active genes significantly better than sequence-dependent models.


Subject(s)
Chromatin/metabolism , Drosophila melanogaster/genetics , Gene Expression Profiling , Genome , Nucleosomes/metabolism , Animals , Chromatin Immunoprecipitation , Drosophila melanogaster/embryology
SELECTION OF CITATIONS
SEARCH DETAIL
...