Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
EMBO Rep ; 23(9): e55375, 2022 09 05.
Article in English | MEDLINE | ID: mdl-35852463

ABSTRACT

Stem cells intrinsically express a subset of genes which are normally associated with interferon stimulation and the innate immune response. However, the expression of these interferon-stimulated genes (ISG) in stem cells is independent from external stimuli such as viral infection. Here, we show that the interferon regulatory factor 1, Irf1, is directly controlled by the murine formative pluripotency gene regulatory network and transiently upregulated during the transition from naive to formative pluripotency. IRF1 binds to regulatory regions of a conserved set of ISGs and is required for their faithful expression upon exit from naive pluripotency. We show that in the absence of IRF1, cells exiting the naive pluripotent stem cell state are more susceptible to viral infection. Irf1 therefore acts as a link between the formative pluripotency network, regulation of innate immunity genes, and defense against viral infections during formative pluripotency.


Subject(s)
Pluripotent Stem Cells , Virus Diseases , Animals , Antiviral Agents , Interferon Regulatory Factor-1/genetics , Interferon Regulatory Factor-1/metabolism , Interferons/metabolism , Mice , Pluripotent Stem Cells/metabolism , Up-Regulation , Virus Diseases/genetics , Virus Diseases/metabolism
2.
Genes Dev ; 36(5-6): 348-367, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35241478

ABSTRACT

Cell fate transitions depend on balanced rewiring of transcription and translation programs to mediate ordered developmental progression. Components of the nonsense-mediated mRNA decay (NMD) pathway have been implicated in regulating embryonic stem cell (ESC) differentiation, but the exact mechanism is unclear. Here we show that NMD controls expression levels of the translation initiation factor Eif4a2 and its premature termination codon-encoding isoform (Eif4a2PTC ). NMD deficiency leads to translation of the truncated eIF4A2PTC protein. eIF4A2PTC elicits increased mTORC1 activity and translation rates and causes differentiation delays. This establishes a previously unknown feedback loop between NMD and translation initiation. Furthermore, our results show a clear hierarchy in the severity of target deregulation and differentiation phenotypes between NMD effector KOs (Smg5 KO > Smg6 KO > Smg7 KO), which highlights heterodimer-independent functions for SMG5 and SMG7. Together, our findings expose an intricate link between mRNA homeostasis and mTORC1 activity that must be maintained for normal dynamics of cell state transitions.


Subject(s)
Carrier Proteins , Nonsense Mediated mRNA Decay , Carrier Proteins/genetics , Gene Expression , HeLa Cells , Humans , Mechanistic Target of Rapamycin Complex 1/genetics , Mechanistic Target of Rapamycin Complex 1/metabolism
3.
Ann N Y Acad Sci ; 1506(1): 74-97, 2021 12.
Article in English | MEDLINE | ID: mdl-34605044

ABSTRACT

Single cell biology has the potential to elucidate many critical biological processes and diseases, from development and regeneration to cancer. Single cell analyses are uncovering the molecular diversity of cells, revealing a clearer picture of the variation among and between different cell types. New techniques are beginning to unravel how differences in cell state-transcriptional, epigenetic, and other characteristics-can lead to different cell fates among genetically identical cells, which underlies complex processes such as embryonic development, drug resistance, response to injury, and cellular reprogramming. Single cell technologies also pose significant challenges relating to processing and analyzing vast amounts of data collected. To realize the potential of single cell technologies, new computational approaches are needed. On March 17-19, 2021, experts in single cell biology met virtually for the Keystone eSymposium "Single Cell Biology" to discuss advances both in single cell applications and technologies.


Subject(s)
Cell Differentiation/physiology , Cellular Reprogramming/physiology , Congresses as Topic/trends , Embryonic Development/physiology , Research Report , Single-Cell Analysis/trends , Animals , Cell Lineage/physiology , Humans , Macrophages/physiology , Single-Cell Analysis/methods
4.
Mol Cell ; 81(5): 969-982.e13, 2021 03 04.
Article in English | MEDLINE | ID: mdl-33482114

ABSTRACT

Many genes are regulated by multiple enhancers that often simultaneously activate their target gene. However, how individual enhancers collaborate to activate transcription is not well understood. Here, we dissect the functions and interdependencies of five enhancer elements that together activate Fgf5 expression during exit from naive murine pluripotency. Four intergenic elements form a super-enhancer, and most of the elements contribute to Fgf5 induction at distinct time points. A fifth, poised enhancer located in the first intron contributes to Fgf5 expression at every time point by amplifying overall Fgf5 expression levels. Despite low individual enhancer activity, together these elements strongly induce Fgf5 expression in a super-additive fashion that involves strong accumulation of RNA polymerase II at the intronic enhancer. Finally, we observe a strong anti-correlation between RNA polymerase II levels at enhancers and their distance to the closest promoter, and we identify candidate elements with properties similar to the intronic enhancer.


Subject(s)
Enhancer Elements, Genetic , Fibroblast Growth Factor 5/genetics , Gene Expression Regulation, Developmental , Mouse Embryonic Stem Cells/metabolism , Promoter Regions, Genetic , RNA Polymerase II/genetics , Animals , Cell Line , Cell Nucleus/genetics , Cell Nucleus/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Exons , Fibroblast Growth Factor 5/metabolism , Gene Knockout Techniques , Genes, Reporter , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Histones/genetics , Histones/metabolism , Introns , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Mice , Mouse Embryonic Stem Cells/cytology , RNA Polymerase II/metabolism , Sequence Analysis, RNA , Signal Transduction , Single-Cell Analysis , Transcription, Genetic , Red Fluorescent Protein
5.
Sci Rep ; 7(1): 149, 2017 03 10.
Article in English | MEDLINE | ID: mdl-28273952

ABSTRACT

Extracellular matrix (ECM) composition and stiffness are major driving forces for the development and persistence of fibrotic diseases. Lysyl oxidase (LOX) and LOX-like (LOXL) proteins play crucial roles in ECM remodeling due to their collagen crosslinking and intracellular functions. Here, we systematically investigated LOX/L expression in primary fibroblasts and epithelial cells under fibrotic conditions, Bleomycin (BLM) induced lung fibrosis and in human IPF tissue. Basal expression of all LOX/L family members was detected in epithelial cells and at higher levels in fibroblasts. Various pro-fibrotic stimuli broadly induced LOX/L expression in fibroblasts, whereas specific induction of LOXL2 and partially LOX was observed in epithelial cells. Immunohistochemical analysis of lung tissue from 14 IPF patients and healthy donors revealed strong induction of LOX and LOXL2 in bronchial and alveolar epithelium as well as fibroblastic foci. Using siRNA experiments we observed that LOXL2 and LOXL3 were crucial for fibroblast-to-myofibroblast transition (FMT). As FMT could only be reconstituted with an enzymatically active LOXL2 variant, we conclude that LOXL2 enzymatic function is crucial for fibroblast transdifferentiation. In summary, our study provides a comprehensive analysis of the LOX/L family in fibrotic lung disease and indicates prominent roles for LOXL2/3 in fibroblast activation and LOX/LOXL2 in IPF.


Subject(s)
Amino Acid Oxidoreductases/metabolism , Bleomycin/adverse effects , Protein-Lysine 6-Oxidase/metabolism , Pulmonary Fibrosis/enzymology , Animals , Cell Line , Cell Transdifferentiation , Fibroblasts/cytology , Fibroblasts/metabolism , Humans , Male , Mice , Multigene Family , Myofibroblasts/cytology , Myofibroblasts/metabolism , Pulmonary Fibrosis/chemically induced
SELECTION OF CITATIONS
SEARCH DETAIL
...