ABSTRACT
This study sought to develop a simple index for ranking birds' environmental sensitivity to oil in which birds are used as biological indicators. The study area consisted of both the Santos Estuarine System (SES), and the Laje de Santos Marine State Park (LSMSP), located in Southeastern Brazil. Information on the bird species and their feeding and nesting behaviors were obtained from the literature and were the basis of the sensitivity index created. The SES had a higher number of species, but only about 30% were found to be highly sensitive. The LSMSP presented a much lower number of species, but all of them were considered to be highly sensitive to oil. Due to its simplicity, this index can be employed worldwide as a decision-making tool that may be integrated into other management tools, particularly when robust information on the biology of birds is lacking.
Subject(s)
Birds/physiology , Environmental Monitoring/methods , Feeding Behavior/drug effects , Nesting Behavior/drug effects , Petroleum Pollution/analysis , Water Pollutants, Chemical/analysis , Animals , Bays/chemistry , Brazil , Ecosystem , Estuaries , Industry , Species Specificity , Water Pollutants, Chemical/toxicityABSTRACT
The growth of maritime transport and oil exploitation activities may increase the risk of oil spills. Thus, plans and actions to prevent or mitigate impacts are needed to minimize the effects caused by oil. However, tools used worldwide to support contingency plans have not been integrated, thus leading to failure in establishing priority areas. This investigation aimed to develop indices of environmental vulnerability to oil (IEVO), by combining information about environmental sensibility to oil and results of numerical modeling of spilled oil. To achieve that, a case study concerning to oil spills scenarios in a subtropical coastal area was designed, and IEVOs were calculated and presented in maps, in order to make the information about the areas' vulnerability more easily visualized. For summer, the extension of coastline potentially affected by oil was approximately 150 km, and most of the coastline presented medium to high vulnerability. For winter, 230 km coastline would be affected, from which 75% were classified as medium to high vulnerability. Thus, IEVO maps allowed a rapid and clearer interpretation of the vulnerability of the mapped region, facilitating the planning process and the actions in response to an oil spill.