Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(5): e27295, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38486744

ABSTRACT

Introduction: Dimethyl sulfoxide (DMSO), a widely utilized solvent in the medical industry, has been associated with various adverse effects, even at low concentrations, including damage to mitochondrial integrity, altered membrane potentials, caspase activation, and apoptosis. Notably, therapeutic molecules for central nervous system treatments, such as embolic agents or some chemotherapy drugs that are dissolved in DMSO, have been associated with hydrocephalus as a secondary complication. Our study investigated the potential adverse effects of DMSO on the brain, specifically focusing on the development of hydrocephalus and the effect on astrocytes. Methods: Varied concentrations of DMSO were intraventricularly injected into 3-day-old mice, and astrocyte cultures were exposed to similar concentrations of DMSO. After 14 days of injection, magnetic resonance imaging (MRI) was employed to quantify the brain ventricular volumes in mice. Immunofluorescence analysis was conducted to delineate DMSO-dependent effects in the brain. Additionally, astrocyte cultures were utilized to assess astrocyte viability and the effects of cellular apoptosis. Results: Our findings revealed a dose-dependent induction of ventriculomegaly in mice with 2%, 10%, and 100% DMSO injections (p < 0.001). The ciliated cells of the ventricles were also proportionally affected by DMSO concentration (p < 0.0001). Furthermore, cultured astrocytes exhibited increased apoptosis after DMSO exposure (p < 0.001). Conclusion: Our study establishes that intraventricular administration of DMSO induces hydrocephalus in a dose-dependent manner. This observation sheds light on a potential explanation for the occurrence of hydrocephalus as a secondary complication in intracranial treatments utilizing DMSO as a solvent.

2.
Childs Nerv Syst ; 40(1): 115-121, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37417983

ABSTRACT

PURPOSE: Proximal catheter obstruction is the leading cause of ventricular shunt failure in pediatric patients. Our aim is to evaluate various types of shunt catheters to assess in vitro cellular adhesion and obstruction. METHODS: Four catheter types were tested: (1) antibiotic and impregnated, (2) barium-stripe polyvinylpyrrolidone coated (PVP), (3) barium-stripe, and (4) barium-impregnated. Catheters were seeded with choroid plexus epithelial cells to test cellular adhesion and inoculated with the same cells to test flow/pressure performance under choroid plexus growth conditions. Ventricular catheters were placed into a three-dimensional printed phantom ventricular replicating system through which artificial cerebrospinal fluid (CSF) was pumped. Differential pressure sensors were used to measure catheter performance. RESULTS: PVP catheters had the lowest median cell attachment (10 cells) compared to antibiotic-impregnated (230 cells), barium stripe (513 cells), and barium-impregnated (146 cells) catheters after culture (p < 0.01). In addition, PVP catheters (- 0.247 cm H2O) and antibiotic-impregnated (- 1.15 cm H2O) catheters had significantly lower pressure in the phantom ventricular system compared to the barium stripe (0.167 cm H2O) and barium-impregnated (0.618 cm H2O; p < 0.01) catheters. CONCLUSIONS: PVP catheters showed less cellular adhesion and, together with antibiotic-impregnated catheters, required less differential pressure to maintain a consistent flow. Our findings suggest clinical relevance for using PVP ventricular catheters in patients with recurrent catheter obstruction by choroid plexus.


Subject(s)
Choroid Plexus , Hydrocephalus , Child , Humans , Choroid Plexus/surgery , Povidone , Barium , Cerebrospinal Fluid Shunts/methods , Catheters , Anti-Bacterial Agents/therapeutic use , Hydrocephalus/surgery , Hydrocephalus/drug therapy , Catheters, Indwelling
3.
Children (Basel) ; 9(10)2022 Sep 23.
Article in English | MEDLINE | ID: mdl-36291388

ABSTRACT

OBJECTIVE: One of the major causes of cerebral ventricular shunt failure is proximal catheter occlusion. We describe a novel ventricular cerebrospinal fluid (CSF) flow replicating system that assesses pressure and flow responses to varying degrees of catheter occlusion. METHODS: Ventricular catheter performance was assessed during conditions of partial and complete occlusion. The catheters were placed into a three-dimensionally-printed phantom ventricular replicating system. Artificial CSF was pumped through the ventricular system at a constant rate of 1 mL/min to mimic CSF flow, with the proximal end of the catheter in the phantom ventricle. Pressure transducer and flow rate sensors were used to measure intra-phantom pressure, outflow pressure, and CSF flow rates. The catheters were also inserted into silicone tubing and pressure was measured in the same manner for comparison with the phantom. RESULTS: Pressure measured in the ventricle phantom did not change when the outflow of the ventricular catheter was partially occluded. However, the intraventricular phantom pressure significantly increased when the outflow catheter was 100% occluded. The flow through the catheter showed no significant difference in rate with any degree of partial occlusion of the catheter. At the distal end of the partially occluded catheters, there was less pressure compared with the nonoccluded catheters. This difference in pressure in partially occluded catheters correlated with the percentage of catheter hole occlusion. CONCLUSIONS: Our model mimics the physiological dynamics of the CSF flow in partially and completely obstructed ventricular catheters. We found that partial occlusion of the catheter had no effect on the CSF flow rate, but did reduce outflow pressure from the catheter.

4.
Children (Basel) ; 10(1)2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36670569

ABSTRACT

The leading cause of ventricular shunt failure in pediatric patients is proximal catheter occlusion. Here, we evaluate various types of shunt catheters to assess in vitro cellular adhesion and obstruction. The following four types of catheters were tested: (1) antibiotic- and barium-impregnated, (2) polyvinylpyrrolidone, (3) barium stripe, and (4) barium impregnated. Catheters were either seeded superficially with astrocyte cells to test cellular adhesion or inoculated with cultured astrocytes into the catheters to test catheter performance under obstruction conditions. Ventricular catheters were placed into a three-dimensional printed phantom ventricular replicating system through which artificial CSF was pumped. Differential pressure sensors were used to measure catheter performance. Polyvinylpyrrolidone catheters had the lowest median cell attachment compared to antibiotic-impregnated (18 cells), barium stripe (17 cells), and barium-impregnated (21.5 cells) catheters after culture (p < 0.01). In addition, polyvinylpyrrolidone catheters had significantly higher flow in the phantom ventricular system (0.12 mL/min) compared to the antibiotic coated (0.10 mL/min), barium stripe (0.02 mL/min) and barium-impregnated (0.08 mL/min; p < 0.01) catheters. Polyvinylpyrrolidone catheters showed less cellular adhesion and were least likely to be occluded by astrocyte cells. Our findings can help suggest patient-appropriate proximal ventricular catheters for clinical use.

SELECTION OF CITATIONS
SEARCH DETAIL
...