Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Avian Pathol ; 45(2): 194-201, 2016.
Article in English | MEDLINE | ID: mdl-26813537

ABSTRACT

Klebsiella pneumoniae is considered one of the most important Gram-negative opportunistic pathogens. The contact between humans and birds poses health risks to both. The aim of this study was to investigate the resistance and virulence of K. pneumoniae isolates from psittacines and passerines, seized from illegal trade in Brazil. We analysed 32 strains isolated from birds of the orders Psittaciformes and Passeriformes by polymerase chain reaction (PCR) for virulence factor genes. Antibiotic resistance was assessed by disk diffusion assay and PCR. The results indicated that fimH (100%), uge (96.8%), kfu (81.2%) and irp-2 (68.7%) were the most common virulence genes, followed by kpn (46.8%), K2 (43.7%), mrkD (34.3%) and iroN (15.6%). The combination of virulence genes resulted in a great diversity of genotypes and the heterogeneity of the strains is also confirmed in the analysis by amplified fragment length polymorphism. The susceptibility profiles of the K. pneumoniae showed 25% of multiple antibiotic resistance strains. We identified seven strains that presented non-extended spectrum beta lactamase blaSHV variants SHV-1 and SHV-11 and one strain positive to the blaTEM-1 gene. Plasmid-mediated quinolone resistance was present in 10 strains (10/32). The data obtained in this study reveal the pathogenic potential of this pathogen and highlight the need for surveillance and monitoring.


Subject(s)
Drug Resistance, Bacterial , Klebsiella pneumoniae/pathogenicity , Passeriformes/microbiology , Psittaciformes/microbiology , Virulence Factors/genetics , beta-Lactamases/genetics , Animals , Anti-Infective Agents/pharmacology , Bacterial Proteins/genetics , Brazil , Genetic Variation , Genotype , Humans , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/genetics , Plasmids/genetics , Quinolones/pharmacology , Virulence
2.
Environ Technol ; 31(3): 319-26, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20426273

ABSTRACT

A laboratory scale anaerobic/aerobic (An/Ar) system, comprising an anaerobic filter (AF) coupled to an aerobic sequential batch reactor (SBR), was developed to treat wastewater from a slaughterhouse. The AF operated with organic loadings (OL) from 3.7 to 16.5 kg m(-3) d(-1) and a hydraulic retention time (HRT) ranging from 16 to 72 h. The efficiency of chemical oxygen demand (COD) removal was between 50 and 81% and was shown to be related inversely to the value of the OL. The production rate of methane was in the region of 411 mL per g of COD removed. On the other hand, the degradation of organic matter (OM) by an aerobic pathway in the SBR followed first-order kinetics with regard to OM concentration; 85% of the remaining OM from the AF was eliminated within 6 h of aeration, and over 95% of total OM was eliminated as COD within 9 h. The optimal treatment conditions in this system were found at OL = 11.0 kg m-3 d(-1) and HRT = 24 h in the AF, whereas the SBR was most efficient at 9 h of aeration.


Subject(s)
Abattoirs , Industrial Waste/analysis , Water Purification/methods , Aerobiosis , Anaerobiosis , Animals , Bioreactors , Equipment Design , Gases , Kinetics , Methane/chemistry , Oxygen/chemistry , Time Factors , Water Pollutants, Chemical/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...