Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Fungi (Basel) ; 7(9)2021 Sep 16.
Article in English | MEDLINE | ID: mdl-34575803

ABSTRACT

Root fungal endophytes are essential mediators of plant nutrition under mild stress conditions. However, variations in the rhizosphere environment, such as nutrient depletion, could result in a stressful situation for both partners, shifting mutualistic to nonconvenient interactions. Mycorrhizal fungi and dark septate endophytes (DSEs) have demonstrated their ability to facilitate phosphate (Pi) acquisition. However, few studies have investigated other plant-fungal interactions that take place in the root environment with regard to phosphate nutrition. In the present research work, we aimed to analyze the effect of extreme Pi starvation and the fungal endophyte Fusarium solani on the model Lotus japonicus and the crop L. tenuis. We conducted metabolomics analysis based on gas chromatography-mass spectrometry (GC-MS) on plant tissues under optimal conditions, severe Pi starvation and F.solani presence. By combining statistical and correlation network analysis strategies, we demonstrated the differential outcomes of the two plant species against the combination of treatments. The combination of nutritional stress and Fusarium presence activated significant modifications in the metabolism of L. japonicus affecting the levels of sugars, polyols and some amino acids. Our results display potential markers for further inspection of the factors related to plant nutrition and plant-fungal interactions.

2.
Front Plant Sci ; 10: 1415, 2019.
Article in English | MEDLINE | ID: mdl-31749821

ABSTRACT

Polyamines (PAs) are natural aliphatic amines involved in many physiological processes in almost all living organisms, including responses to abiotic stresses and microbial interactions. On other hand, the family Leguminosae constitutes an economically and ecologically key botanical group for humans, being also regarded as the most important protein source for livestock. This review presents the profuse evidence that relates changes in PAs levels during responses to biotic and abiotic stresses in model and cultivable species within Leguminosae and examines the unreviewed information regarding their potential roles in the functioning of symbiotic interactions with nitrogen-fixing bacteria and arbuscular mycorrhizae in this family. As linking plant physiological behavior with "big data" available in "omics" is an essential step to improve our understanding of legumes responses to global change, we also examined integrative MultiOmics approaches available to decrypt the interface legumes-PAs-abiotic and biotic stress interactions. These approaches are expected to accelerate the identification of stress tolerant phenotypes and the design of new biotechnological strategies to increase their yield and adaptation to marginal environments, making better use of available plant genetic resources.

3.
J Plant Physiol ; 231: 281-290, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30342327

ABSTRACT

The polyamines putrescine, spermidine and spermine participate in a variety of cellular processes in all organisms. Many studies have shown that these polycations are important for plant immunity, as well as for the virulence of diverse fungal phytopathogens. However, the polyamines' roles in the pathogenesis of phytopathogenic bacteria have not been thoroughly elucidated to date. To obtain more information on this topic, we assessed the changes in polyamine homeostasis during the infection of tomato plants by Pseudomonas syringae. Our results showed that polyamine biosynthesis and catabolism are activated in both tomato and bacteria during the pathogenic interaction. This activation results in the accumulation of putrescine in whole leaf tissues, as well as in the apoplastic fluids, which is explained by the induction of its synthesis in plant cells and also on the basis of its excretion by bacteria. We showed that the excretion of this polyamine by P. syringae is stimulated under virulence-inducing conditions, suggesting that it plays a role in plant colonization. However, no activation of bacterial virulence traits or induction of plant invasion was observed after the exogenous addition of putrescine. In addition, no connection was found between this polyamine and plant defence responses. Although further research is warranted to unravel the biological functions of these molecules during plant-bacterial interactions, this study contributes to a better understanding of the changes associated with the homeostasis of polyamines during plant pathogenesis.


Subject(s)
Plant Diseases/microbiology , Pseudomonas syringae/metabolism , Putrescine/metabolism , Solanum lycopersicum/microbiology , Spermidine/metabolism , Spermine/metabolism , Chlorophyll A/metabolism , Gene Expression Profiling , Host-Pathogen Interactions , Solanum lycopersicum/metabolism , Plant Immunity , Plant Leaves/metabolism
4.
Mol Plant Microbe Interact ; 24(8): 888-96, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21751851

ABSTRACT

Botrytis cinerea, as a necrotrophic fungus, kills host tissues and feeds on the remains. This fungus is able to induce the hypersensitive response (HR) on its hosts, thus taking advantage on the host's defense machinery for generating necrotic tissues. However, the identity of HR effectors produced by B. cinerea is not clear. The aim of this work was to determine whether botrydial, a phytotoxic sesquiterpene produced by B. cinerea, is able to induce the HR on plant hosts, using Arabidopsis thaliana as a model. Botrydial induced the expression of the HR marker HSR3, callose deposition, and the accumulation of reactive oxygen species and phenolic compounds. Botrydial also induced the expression of PR1 and PDF1.2, two pathogenesis-related proteins involved in defense responses regulated by salicylic acid (SA) and jasmonic acid (JA), respectively. A. thaliana and tobacco plants defective in SA signaling were more resistant to botrydial than wild-type plants, as opposed to A. thaliana plants defective in JA signaling, which were more sensitive. It can be concluded that botrydial induces the HR on its hosts and its effects are modulated by host signaling pathways mediated by SA and JA.


Subject(s)
Aldehydes/toxicity , Arabidopsis/drug effects , Botrytis/metabolism , Bridged Bicyclo Compounds/toxicity , Cyclopentanes/metabolism , Oxylipins/metabolism , Salicylic Acid/metabolism , Sesquiterpenes/toxicity , Aldehydes/metabolism , Arabidopsis/genetics , Arabidopsis/microbiology , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Botrytis/genetics , Bridged Bicyclo Compounds/metabolism , Gene Expression Regulation, Plant/drug effects , Plant Diseases/immunology , Plant Diseases/microbiology , Plant Leaves/drug effects , Sesquiterpenes/metabolism , Signal Transduction/drug effects , Nicotiana/drug effects , Nicotiana/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...