Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38798427

ABSTRACT

Objective: The mitochondrial pyruvate carrier (MPC) occupies a critical node in intermediary metabolism, prompting interest in its utility as a therapeutic target for the treatment of obesity and cardiometabolic disease. Dysregulated nutrient metabolism in adipose tissue is a prominent feature of obesity pathophysiology, yet the functional role of adipose MPC has not been explored. We investigated whether the MPC shapes the adaptation of adipose tissue to dietary stress in female and male mice. Methods: The impact of pharmacological and genetic disruption of the MPC on mitochondrial pathways of triglyceride assembly (lipogenesis and glyceroneogenesis) was assessed in 3T3L1 adipocytes and murine adipose explants, combined with analyses of adipose MPC expression in metabolically compromised humans. Whole-body and adipose-specific glucose metabolism were subsequently investigated in male and female mice lacking adipocyte MPC1 (Mpc1AD-/-) and fed either standard chow, high-fat western style, or high-sucrose lipid restricted diets for 24 weeks, using a combination of radiolabeled tracers and GC/MS metabolomics. Results: Treatment with UK5099 or siMPC1 impaired the synthesis of lipids and glycerol-3-phosphate from pyruvate and blunted triglyceride accumulation in 3T3L1 adipocytes, whilst MPC expression in human adipose tissue was negatively correlated with indices of whole-body and adipose tissue metabolic dysfunction. Mature adipose explants from Mpc1AD-/- mice were intrinsically incapable of incorporating pyruvate into triglycerides. In vivo, MPC deletion restricted the incorporation of circulating glucose into adipose triglycerides, but only in female mice fed a zero fat diet, and this associated with sex-specific reductions in tricarboxylic acid cycle pool sizes and compensatory transcriptional changes in lipogenic and glycerol metabolism pathways. However, whole-body adiposity and metabolic health were preserved in Mpc1AD-/- mice regardless of sex, even under conditions of zero dietary fat. Conclusion: These findings highlight the greater capacity for mitochondrially driven triglyceride assembly in adipose from female versus male mice and expose a reliance upon MPC-gated metabolism for glucose partitioning in female adipose under conditions of dietary lipid restriction.

2.
Medicines (Basel) ; 6(2)2019 May 31.
Article in English | MEDLINE | ID: mdl-31159200

ABSTRACT

Background: Angelica sinensis is a medicinal plant known for a variety of biological effects, including its ability to stimulate innate immune cells in humans. Recent studies indicate that the immunostimulatory activity of A. sinensis arises from microbe-associated molecular patterns (MAMPs) of plant-associated bacteria. However, it is unknown which bacterial taxa in A. sinensis are responsible for the production of immunostimulatory MAMPs. Methods: Samples of A. sinensis were subjected to a cell-based assay to detect monocyte-stimulation and 16S ribosomal RNA amplicon sequencing, which revealed their immunostimulatory activity and microbial communities. The resulting data were analyzed by Linear discriminant analysis effect size (LEfSe), an online biostatistical tool for metagenomic biomarker discovery, to identify the bacterial taxonomical features correlated with the immunostimulatory activity. Results: A series of bacterial taxa under Gammaproteobacteria correlated positively with the immunostimulatory activity, whereas several Gram-positive taxa and Betaproteobacteria correlated negatively with the activity. Conclusions: The identified bacterial taxa set a new stage to characterize immunostimulatory MAMPs in plants.

3.
J Cell Sci ; 127(Pt 23): 5105-14, 2014 Dec 01.
Article in English | MEDLINE | ID: mdl-25300794

ABSTRACT

Knowledge of the distribution of mitochondria and endoplasmic reticulum (ER) in relation to the position of exocytotic sites is relevant to understanding the influence of these organelles in tuning Ca(2+) signals and secretion. Confocal images of probes tagged to mitochondria and the F-actin cytoskeleton revealed the existence of two populations of mitochondria, one that was cortical and one that was perinuclear. This mitochondrial distribution was also confirmed by using electron microscopy. In contrast, ER was sparse in the cortex and more abundant in deep cytoplasmic regions. The mitochondrial distribution might be due to organellar transport, which experiences increasing restrictions in the cell cortex. Further study of organelle distribution in relation to the position of SNARE microdomains and the granule fusion sites revealed that a third of the cortical mitochondria colocalized with exocytotic sites and another third located at a distance closer than two vesicle diameters. ER structures were also present in the vicinity of secretory sites but at a lower density. Therefore, mitochondria and ER have a spatial distribution that suggests a specialized role in modulation of exocytosis that fits with the role of cytosolic Ca(2+) microdomains described previously.


Subject(s)
Chromaffin Cells/metabolism , Chromaffin Cells/ultrastructure , Endoplasmic Reticulum/ultrastructure , Exocytosis , Mitochondria/ultrastructure , Animals , Calcium Signaling , Cattle , Cells, Cultured , Endoplasmic Reticulum/metabolism , Energy Metabolism , Microscopy, Confocal , Microscopy, Electron, Transmission , Microscopy, Fluorescence , Mitochondria/metabolism , Time Factors , Transfection
4.
Int J Biochem Cell Biol ; 45(3): 583-92, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23220175

ABSTRACT

It has been proposed recently that the F-actin cytoskeleton organizes the relative disposition of the SNARE proteins and calcium channels that form part of the secretory machinery in chromaffin cells, a neurosecretory model. To test this idea, we used confocal microscopy do determine if DsRed-SNAP-25 microdomains, which define the final sites of exocytosis along with syntaxin-1, preferentially remain in contact with F-actin cortical structures labelled by lifeact-EGFP. A quantitative analysis showed that in cells over-expressing these constructs there is a preferential colocalization, rather than a random distribution of SNAP-25 patches. To analyze the possible interactions between these proteins, we designed FRET experiments and tested whether treatment with agents that affect F-actin mobility would modify SNAP-25 movement. The significant FRET efficiencies detected suggest that direct molecular interactions occur, whereas dynamic experiments using TIRFM revealed that attenuation of cortical F-actin movement clearly diminishes the mobility of SNAP-25 clusters. Taken together, these data can be explained by a model that associates components of the secretory machinery to the F-actin cortex through flexible links.


Subject(s)
Actins/metabolism , Chromaffin Cells/metabolism , Exocytosis/genetics , Synaptosomal-Associated Protein 25/metabolism , Actins/genetics , Animals , Calcium Channels/metabolism , Cattle , Chromaffin Cells/cytology , Cytoskeleton/metabolism , Exocytosis/physiology , Microscopy, Confocal , Qa-SNARE Proteins/metabolism , SNARE Proteins/metabolism , Synaptosomal-Associated Protein 25/genetics
5.
J Cell Sci ; 124(Pt 5): 727-34, 2011 Mar 01.
Article in English | MEDLINE | ID: mdl-21303931

ABSTRACT

We have studied how the F-actin cytoskeleton is involved in establishing the heterogeneous intracellular Ca(2+) levels ([Ca(2+)](i)) and in the organization of the exocytotic machinery in cultured bovine chromaffin cells. Simultaneous confocal visualization of [Ca(2+)](i) and transmitted light studies of the cytoskeleton showed that, following cell stimulation, the maximal signal from the Ca(2+)-sensitive fluorescent dye Fluo-3 was in the empty cytosolic spaces left by cytoskeletal cages. This was mostly due to the accumulation of the dye in spaces devoid of cytoskeletal components, as shown by the use of alternative Ca(2+)-insensitive fluorescent cytosolic markers. In addition to affecting the distribution of such compounds in the cytosol, the cytoskeleton influenced the location of L- and P-Q-type Ca(2+) channel clusters, which were associated with the borders of cytoskeletal cages in resting and stimulated cells. Indeed, syntaxin-1 and synaptotagmin-1, which are components of the secretory machinery, were present in the same location. Furthermore, granule exocytosis took place at these sites, indicating that the organization of the F-actin cytoskeletal cortex shapes the preferential sites for secretion by associating the secretory machinery with preferential sites for Ca(2+) entry. The influence of this cortical organization on the propagation of [Ca(2+)](i) can be modelled, illustrating how it serves to define rapid exocytosis.


Subject(s)
Actins/metabolism , Chromaffin Cells/cytology , Chromaffin Cells/metabolism , Cytoskeleton/metabolism , Exocytosis/physiology , Aniline Compounds/metabolism , Animals , Calcium/metabolism , Calcium Channels/metabolism , Cattle , Cells, Cultured , Chromaffin Granules/metabolism , Cytoplasm/metabolism , Cytoskeleton/ultrastructure , Fluorescent Dyes/metabolism , Membrane Fusion/physiology , Qa-SNARE Proteins/metabolism , Synaptotagmins/metabolism , Xanthenes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...