Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 102(3): 547-52, 2005 Jan 18.
Article in English | MEDLINE | ID: mdl-15647345

ABSTRACT

Despite the increasing availability of genome sequences from many human pathogens, the production of complete proteomes remains at a bottleneck. To address this need, a high-throughput PCR recombination cloning and expression platform has been developed that allows hundreds of genes to be batch-processed by using ordinary laboratory procedures without robotics. The method relies on high-throughput amplification of each predicted ORF by using gene specific primers, followed by in vivo homologous recombination into a T7 expression vector. The proteins are expressed in an Escherichia coli-based cell-free in vitro transcription/translation system, and the crude reactions containing expressed proteins are printed directly onto nitrocellulose microarrays without purification. The protein microarrays are useful for determining the complete antigen-specific humoral immune-response profile from vaccinated or infected humans and animals. The system was verified by cloning, expressing, and printing a vaccinia virus proteome consisting of 185 individual viral proteins. The chips were used to determine Ab profiles in serum from vaccinia virus-immunized humans, primates, and mice. Human serum has high titers of anti-E. coli Abs that require blocking to unmask vaccinia-specific responses. Naive humans exhibit reactivity against a subset of 13 antigens that were not associated with vaccinia immunization. Naive mice and primates lacked this background reactivity. The specific profiles between the three species differed, although a common subset of antigens was reactive after vaccinia immunization. These results verify this platform as a rapid way to comprehensively scan humoral immunity from vaccinated or infected humans and animals.


Subject(s)
Antibody Formation/immunology , Antigens, Viral/immunology , Infections/immunology , Protein Array Analysis/methods , Animals , Antibodies, Viral/blood , Base Sequence , Cloning, Molecular/methods , Humans , Mice , Molecular Sequence Data , Primates , Proteome/immunology , Serologic Tests/methods , Vaccines/immunology , Vaccinia virus/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...